@phdthesis{Franke2015, author = {Kristin Franke}, title = {Inbreeding and thermal adaptation in the tropical butterfly Bicyclus anynana}, journal = {Inzucht und thermische Anpassung bei dem tropischen Tagfalter Bicyclus anynana}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002145-6}, year = {2015}, abstract = {The impact of inbreeding under different environmental conditions and of artificial selection on cold tolerance was investigated in laboratory populations of the tropical butterfly Bicyclus anynana. The investigation focused on (1) the effects of inbreeding on several fitness-related traits and whether inbred individuals are more susceptible to stress, (2) interactions between inbreeding, genetic adaptation to cold stress and environmental conditions, (3) the effects of artificial selection and inbreeding in the adult stage in other developmental stages, and (4) the effect of inbreeding depression on the heat shock response. Environmental conditions are not constant over time; consequently organisms have to deal with environmental changes. Besides naturally fluctuating conditions, human-induced climate change may increase temperature changes as well as the severity of heat or cold waves. Temperature-stress resistance describes an organism’s ability to cope with stressful temperatures. Enhanced resistance to temperature stress can be reached by phenotypic plasticity or genetic adaptation. Plastic organisms are able to react fast to changing environmental conditions, whereas genetic adaptation is more important for long-term adaptation. Natural habitats may also be affected by human impact, causing habitat loss or fragmentation and changes in population structure. A decrease in the population size may result in inbreeding and inbreeding depression (ID). Consequences of inbreeding are well documented, and inbred individuals are predicted to be more sensitive to environmental stress than outbred individuals. The long term persistence of species and populations depends on their ability to adapt to novel conditions which in turn depends on genetic diversity. Therefore, studies of temperature resistance and its evolution in relation to inbreeding are very important. First a higher susceptibility of inbred individuals to environmental stress was determined in different populations of B. anynana. Inbreeding depression was revealed for several fitness-related traits, but not for immunity traits or heat tolerance. Temperature affected most traits, revealing the importance of temperature on ectotherms; just two hours of thermal stress affected important reproductive, life-history and immunity traits already. Importantly though, no evidence were found that inbred individuals are more susceptible to stressful temperatures than outbred individuals. Genetic adaptation and phenotypic plasticity can interact with one another, resulting in genotype-environmental interactions (G x E). The hypotheses tested here were that some genotypes are more plastic than others and that lines with increased cold stress resistance are less plastic with regard to cold resistance than control lines. To induce plastic responses the exposed lines differed in cold tolerance and inbreeding to different temperatures as well as different feeding regimes and measured fitness-related traits. Several interactions were detected in which a selection regime was involved, but these interactions did not show a clear overall pattern. In summary though, findings were that marginal impacts of directional selection and inbreeding on plastic responses and suggest that, at least for my study organism, the genetic architecture of fitness-related traits is not connected with the architecture of plastic responses. The next investigation concerned with the manifestation of genetic adaptation to produce one specific phenotype across development stages and possible trade-offs. The assumption tested was that there is a genetic link between different developmental stages to produce one definite phenotype by imposing selection in the adult stage only. Lines selected for increased cold resistance in the adult stage were used and increased cold resistance throughout all developmental stages was expected. However, higher cold resistance was found only in the adult stage and not in developmental stages. This could be either the result of a resource allocation trade-off between different stages or that there is no cold resistance phenotype. Thus, if selection takes place in the adult stage it does not affect the others. In the last experiment investigation was directed to determine whether there are negative inbreeding effects on the heat shock protein (HSP) response. Under stressful conditions, organisms produce the HSPs and they act as chaperons required for refolding and repairing of stress degraded proteins. Testing was oriented to find if inbreeding as a genetic stressor´ provokes a higher HSP expression and if there is evidence for higher temperature stress susceptibility on inbred individuals. Findings indeed showed a stronger HSP up-regulation in control compared to inbred lines with a negative inbreeding impact occurrence, which may causally underlie inbreeding depression.}, language = {en} }