@phdthesis{Hoeft2015, author = {Hans H{\"o}ft}, title = {Characteristics of pulsed operated dielectric barrier discharges in molecular gas mixtures}, journal = {Charakteristika von gepulsten, dielektrisch behinderten Entladungen in molekularen Gasgemischen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002262-6}, year = {2015}, abstract = {This thesis investigated dielectric barrier discharges (DBDs) in N2-O2 gas mixtures at atmospheric pressure, with a focus on the gas discharge physics. The main goal was to evaluate whether possible control mechanisms exist that can manipulate the breakdown and the development of DBDs, especially for pulsed operation. To examine the pre-breakdown phase, the actual breakdown and the main DBD development, DBDs in a double-sided, single filament arrangement with a 1 mm discharge gap were investigated by means of electrical and optical diagnostics with high resolutions. Spectrally- and temporally-resolved iCCD pictures (2D in space), spectrally- and spatio-temporally-resolved streak camera and CCS images (1D in space) were simultaneously recorded accompanied by a full electrical characterisation with fast voltage and current probes. Sinusoidal- and pulsed-driven DBDs were found to have a qualitatively similar spatio-temporal development, i.e. a cathode-directed ionisation front (v ~ 10^6 m/s, positive streamer mechanism), followed by a transient glow-like phase in the gap. For sinusoidal operation, the slope of the applied voltage is flat (dU/dt ~ 1 V/ns) compared to pulsed operation (dU/dt ~ 100 V/ns). Thus, during the longer pre-phase of the sine-driven DBD, many more charge carriers were generated, in contrast to the pulsed-driven DBDs, where the pre-phase is limited by the short voltage rise time. Consequently, just before the breakdown occurs, the charge carrier density is higher for sine-driven DBDs, i.e. the positive streamer starts in a highly pre-ionised environment, which leads to a lower propagation velocity. In addition to limiting the pre-phase (lower pre-ionisation), the steep voltage slope of the pulsed DBD amplifies the streamer breakdown because the applied voltage rises significantly during its propagation. Therefore, the transferred electrical charge and the electrical power of a single DBD can be controlled by the applied voltage amplitude, but only in pulsed operation. In addition to the effects of different voltage slope steepness, the pulse width is an excellent parameter in the pulsed operation to set the pre-ionisation, by shifting the DBDs into the after-glow of the previous discharge using asymmetrical HV pulse waveforms. The subsequent DBDs ignite in different pre-ionised conditions, defined by the residual charge carrier densities in the gap that originated from the previous DBD. The breakdown characteristics of these DBDs could be controlled down to the fundamental level. This thesis has described for the first time four different breakdown regimes in single filament DBDs for 0.1 vol\% N2 in O2 and connected them to the processes during their pre-phases. The “classic” DBD development (a cathode-directed streamer followed by a transient glow discharge) could be controlled in a certain range, followed by a transition first to a breakdown regime featuring a simultaneous propagation of a cathode- and an anode-directed streamer, and finally to a reignition of the previous DBDs without any propagation, just by reducing the pulse width (time between two subsequent DBDs), i.e. increasing the pre-ionisation level. All differences between the DBDs at rising and falling slopes could be explained by the different pre-conditions in the gap. The O2 concentration in the N2-O2 gas mixtures offers another way of controlling the pre-ionisation. Due to the electron attachment as a consequence of the electronegativity of oxygen, the electron density decreases for higher O2 admixtures. Furthermore, the differences in the first Townsend ionisation coefficient and in the photo-ionisation between N2 and O2 influence the DBD behaviour as well. To some extent, some of the reported effects achieved by varying the pulse width at a fixed O2/N2 ratio were also observed for a fixed pulse width and changing O2 concentration. Hence, the response of the DBD properties to changing pre-ionisation levels seems to be a general principle of DBD control. Additional effects of the O2/N2 ratio, such as an increasing DBD inception jitter or higher streamer velocities, were also reported. Finally, a reverse of the effects induced by the O2 admixture such as DBD emission duration or DBD inception delay, was observed for O2 concentrations below 0.01 vol\%, and were especially pronounced at a pressure of 0.5 bar. For 0.1 vol\% O2 in N2, a minimal electron recombination rate was found, which can be explained by the different decay and recombination rates of positive nitrogen and oxygen ions. These different rates effect the charge carrier dynamics and consequently, the pre-ionisation in the gap. In conclusion, this investigation has highlighted the importance of volume memory processes on the breakdown and development of single filament DBDs at elevated pressures.}, language = {en} }