@phdthesis{Handtke2016, author = {Stefan Handtke}, title = {Proteomics of Bacillus pumilus}, journal = {Proteomics von Bacillus pumilus}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002457-2}, year = {2016}, abstract = {Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on secretome analysis, Bacillus pumilus strain Jo2, possessing high secretion capability, was chosen for an omics based investigation. The physiology of Bacillus pumilus cells growing either in minimal or complex medium was analyzed by a combination of proteomic and metabolomic methods. Master gels of the cytosolic and the secreted proteome covering major parts of the main metabolic pathways were created by means of 2D gel electrophoresis. Quantification of 2D gels allowed displaying the most abundant proteins in these sub-proteomes. Application of the GeLC-MS/MS technique tripled the number of identified proteins and enabled detection of many intrinsic membrane proteins. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43 \% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H-NMR methods numerous metabolites were analyzed and assigned to the reconstructed metabolic pathways. Our data indicate that applying a combination of proteomic and metabolomic techniques a comprehensive view of the physiology of growing B. pumilus cells can be gained. In addition, selected production-relevant genome features such as the restriction modification system, NRPS clusters and the secretory system of B. pumilus Jo2 are discussed. In their natural habitat, the soil, B. pumilus cells are often exposed to growth limiting conditions due to the lack of sufficient amounts of nutrients. Such limitations can also occur during fermentation conditions and will negatively influence the efficiency of the process. Glucose is the main carbon and energy source of B. pumilus. Thus, a deficiency of glucose has an enormous impact on cell growth. A 1D LC-MS/MS approach was performed to quantify the proteins using an N14/N15 labeling and to analyze the changes in the protein equipment when B. pumilus cells stop their exponential growth and become stationary due to limitation of glucose. 1033 proteins in the cytosolic fraction of B. pumilus cells were quantified and 272 of them appeared to be upregulated when the cells experience glucose starvation. 2D-PAGE was used to analyze the exoproteome of those cells. Glucose starving B. pumilus cells seemed to focus on usage of proteins and peptides as alternative carbon and energy sources instead of other carbohydrates. Especially the exoproteome of glucose starving cells is dominated by proteases and peptidases. Furthermore, cells used fatty acids as carbon source indicated by upregulation of enzymes involved in β-oxidation and the methylcitrate pathway. Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus. Using the physiological knowledge gained during our studies, we analyzed samples taken during an industrial fermentation process. Five samples were taken during the processes using a protease overexpressing B. pumilus strain and a non-overexpressing B. pumilus reference strain. 2D-PAGE was employed to analyze the samples. 448 proteins could be identified in the samples from the protease overexpressing stain as well as 453 proteins in the reference strain. The proteins were quantified relatively comparing the different growth phases of each strain as well as comparing the strains to each other. The physiological knowledge gained from the shake flask studies enabled us to interpret the findings. Both strains showed an induction of proteins involved in acquisition of alternative carbon sources and of proteins involved in degradation and usage of fatty acids, e.g. the methylcitrate pathway, when they stop exponential growth. This is comparable to the results gained from the analysis of B. pumilus cells under glucose limitation, indicating similar conditions during the processes. Especially in the late phases of the fermentation processes the cells were obviously exposed to severe stress conditions. Our results demonstrated that overexpressing cells showed a significantly stronger oxidative stress response at the end of the fermentation process compared to non-overexpressing cells, which indicated that not only the high cell densities but also the overproduction of the target protein might be responsible for these conditions.}, language = {en} }