@phdthesis{Kristel2020, author = {Peter Kristel}, title = {The Spinor Bundle on Loop Space and its Fusion product}, journal = {Das Spinorb{\"u}ndel {\"u}ber dem Schleifenraum und sein Fusionsprodukt}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-35744}, pages = {106}, year = {2020}, abstract = {Given a manifold with a string structure, we construct a spinor bundle on its loop space. Our construction is in analogy with the usual construction of a spinor bundle on a spin manifold, but necessarily makes use of tools from infinite dimensional geometry. We equip this spinor bundle on loop space with an action of a bundle of Clifford algebras. Given two smooth loops in our string manifold that share a segment, we can construct a third loop by deleting this segment. If this third loop is smooth, then we say that the original pair of loops is a pair of compatible loops. It is well-known that this operation of fusing compatible loops is important if one wants to understand the geometry of a manifold through its loop space. In this work, we explain in detail how the spinor bundle on loop space behaves with respect to fusion of compatible loops. To wit, we construct a family of fusion isomorphisms indexed by pairs of compatible loops in our string manifold. Each of these fusion isomorphisms is an isomorphism from the relative tensor product of the fibres of the spinor bundle over its index pair of compatible loops to the fibre over the loop that is the result of fusing the index pair. The construction of a spinor bundle on loop space equipped with a fusion product as above was proposed by Stolz and Teichner with the goal of studying the Dirac operator on loop space\". Our construction combines facets of the theory of bimodules for von Neumann algebras, infinite dimensional manifolds, and Lie groups and their representations. We moreover place our spinor bundle on loop space in the context of bundle gerbes and bundle gerbe modules.}, language = {en} }