@phdthesis{Einenkel2022, author = {Einenkel, Rebekka}, title = {The effect of Fusobacterium nucleatum on leukocyte-trophoblast interactions in vitro}, institution = {Klinik und Poliklinik f{\"u}r Frauenheilkunde u. Geburtshilfe}, pages = {134}, year = {2022}, abstract = {The success of pregnancy depends on precisely adjusted, local immune mechanisms. In early pregnancy, fetal trophoblast cells implant into the endometrium to build and anchor the placenta. Simultaneously, they mediate fetal tolerance and defense against infections. To cover these versatile requirements, local immune factors must be in balance. A too tolerogenic milieu can lead to an inadequate placentation; while a too inflammatory milieu can cause rejection of the semi-allogenic fetus. Bacterial infections can provoke these inflammatory pregnancy complications as well. Therefore, the pregnant uterus was long thought to be sterile. Descriptions of a placental microbiome opened a scientific discourse, which is unsolved due to contrary studies. The colonization of the non-pregnant endometrium is, however, confirmed. It is supposed to affect both, uterine pathologies and fertility. Precise data are lacking. Aim of this work was to assess if and under which circumstances a bacterial colonization would be tolerable. One of the described species in placental and endometrial samples is Fusobacterium nucleatum. It is an opportunistic bacterium, which is known from the human oral cavity and associated with the development of colon carcinomas. F. nucleatum supports tumorigenesis by the induction of epithelial proliferation, survival, migration and invasion as well as angiogenesis and tumor tolerance. Since similar processes are required for implantation and placentation, F. nucleatum might support these as well. In this work, the effects of F. nucleatum on leukocyte-trophoblast-interactions, especially of macrophages and innate lymphoid cells type 3 (ILC3), were assessed. The monocytic cells (THP-1) were differentiated into inflammatory M1 (IFN-γ) or tissue-repairing and tolerogenic M2a (IL-4) and M2c (TGF-β) macrophages. Inactivated F. nucleatum, LPS or E. coli was added. Only small concentrations of inactivated bacteria were used (bacteria:leukocyte ratio of 0.1 or 1), since it was not the aim to analyze infections. Conditioned medium of treated leukocytes was added to trophoblastic cells (HTR-8/SVneo). Migratory, invasive and tube formation behavior of trophoblastic cells was quantified. Treated M1 macrophages impaired trophoblast function, whereas M2a macrophages induced trophoblast invasion. M2c macrophages supported trophoblast migration and tube formation if treated with the smaller, but not with the higher concentration of F. nucleatum. This treatment induced the accumulation of HIF-1α and the secretion of VEGF-A in M2c macrophages as well. Moreover, the higher concentration of F. nucleatum caused rather inflammatory responses (NF-κB activation and cytokine expression). The activation of the HIF-1α-VEGF-A axis under the influence of TGF-β might serve as a mild immune stimulation by low abundant commensal bacteria supporting placentation. In contrast to macrophages, the function of ILC3s during pregnancy is still unknown. In general, ILC3s are located in mucosal tissue, such as the gut. They participate in tolerance mechanisms and form the local micromilieu by the secretion of cytokines and the presentation of antigens. In order to characterize local, uterine ILC3s, murine ILC3s were compared to peripheral, splenic ILC3s. Uterine ILC3s were more activated and produced higher levels of IL-17 compared to splenic ILC3s. However, uterine ILC3s barely expressed MHCII on their surface. A reduced antigen presentation potential was confirmed in human ILC3s differentiated from cord blood stem cells by the addition of TGF-β or hCG. The treatment with bacteria increased MHCII expression, but not to the initial level. The higher bacterial concentration induced IL-8 secretion and led to an increased trophoblast invasion. ILC3s were less sensitive to bacterial stimulation than macrophages. Recent studies on the uterine or placental presence of bacteria during pregnancy are discrepant. The results of this project indicate that bacteria or bacterial residues might serve as a mild stimulus under certain circumstances to support implantation without negative effects. The current discussion must therefore not only be expanded by additional studies, but especially include differentiated local conditions. In this context, the sheer presence of bacteria or bacterial components must not be equated with an infection representing a known hazard.}, subject = {Plazenta}, language = {en} }