@phdthesis{Kennedy2020, author = {Daniel Kennedy}, title = {Kinetic Theory of Electron-Positron Plasmas}, journal = {Kinetische Theorie von Elektron-Positron-Plasmen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-43289}, pages = {248}, year = {2020}, abstract = {In this thesis, I present work motivated, in part, by a series of upcoming laboratory experiments (APEX), which seeks to uncover some of the inner workings of turbulence and stability in electron- positron plasmas in closed field-line systems. I present the results of several distinct, but connected, problems addressing the theory of electron-positron plasmas. This work is partitioned into several parts, which loosely correspond to different particulars of the APEX experiment and the different theoretical physics problems which reside within. I begin with the derivation of a kinetic theory for plasmas which are optically thin to cyclotron emission, as indeed, experimental pair plasmas are expected to be. The results of this section include: (1) the derivation of a general kinetic theory of cyclotron radiation in electron-ion plasmas; (2) a calculation showing that cyclotron emission results in strongly anisotropic distribution functions on the radiation timescale; (3) calculation of the evolution of the distribution function under collisional scattering which, in the absence of any radiation terms, acts to drive the plasma towards a Maxwellian; (4) generalisation of this theory to more exotic geometries; (5) specialisation of this theory to pair plasmas of experimental interest; and (6) presentation of the applications and the limitations of this theory. The second project is primarily concerned with non-neutral plasmas. We begin with gyrokinetic theory and a novel extension of this theoretical framework to plasmas with arbitrary degree of neutrality in straight field-line geometry. I go on to discuss the gyrokinetic stability theory of such plasmas in this simplified geometry. I conclude this project with a discussion of some further nuances in the theory of singly-charged non-neutral plasmas, this time concerning global features. Namely, I declare an interest in the equilibria such plasmas might be able to attain. The final project pertains to plasmas which are in state of Maxwellian equilibrium i.e., electron- positron plasmas with sufficiently large number densities of each species to attain a stationary quasineutral plasma. To this end, I present gyrokinetic flux-tube simulations of electron-positron plasmas in complex, and experimentally relevant, magnetic geometries on the road towards a study of gyrokinetic turbulence. The results of this work include: (1) the first simulations of electron- positron plasmas in a stellarator and ring-dipole geometry; (2) an analytic theory of trapped particle modes in electron-positron plasmas, a result which can also be verified numerically; and (3) extension of several important theoretical results in electron-positron plasmas to experimentally relevant geometries. The culmination of this project is the roadmap ahead towards demonstration of the so-called “inward pinch” effect in electron-positron plasmas in a magnetic Z-pinch.}, language = {en} }