@phdthesis{Bundscherer2014, author = {Lena Christina Bundscherer}, title = {Immune-modulatory effects of non-thermal plasma}, journal = {Immunmodulatorische Effekte von Niedertemperaturplasma}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001801-7}, year = {2014}, abstract = {Non-thermal atmospheric pressure plasma has drawn more and more attention to the field of wound healing research during the last two decades. It is characterized by a unique composition, which includes amongst others free radicals, ions and electrons. Furthermore, non-thermal plasma exhibits temperatures that are below those inducing thermal cell damage. Next to its well-established anti-bacterial properties, plasma can have lethal as well as stimulating effects on mammalian cells. Therefore, the medical application of non-thermal plasma on chronic wounds seems to be a promising tool to enable healing processes. However, less is known about the plasma-mediated induction of intracellular signaling pathways in human immune cells, which play a leading part in the process of wound recovery and removal of pathogens. Therefore, this thesis examined the cellular effects of a non-thermal atmospheric pressure plasma treatment on human immune cells using the argon plasma jet kinpen 09. Here, the CD4+ T helper cell line Jurkat, the monocyte cell line THP-1 as well as the corresponding primary cells were investigated. First, cell survival and apoptosis induction was assessed in response to non-thermal plasma treatment by growth curves and flow cytometric assays. On the one hand it could be shown that primary cells are more susceptible to plasma treatment than the respective cell lines. On the other hand, monocytes responded less sensitive to plasma exposure than lymphocytes. Furthermore, this thesis outlined the impact of non-thermal plasma treatment on the gene expression level of immune cells. Therefore, DNA microarray analysis was performed with the cell lines Jurkat and THP-1. It became obvious that plasma exposure modulated the expression of several genes in both cell types. Differential expression of distinct target genes was further validated by quantitative PCR in the immune cell lines. Here, elevated gene expression levels of JUN and FOS in Jurkat cells and increased transcription of JUND in THP-1 cells in response to plasma treatment were made visible. JUN, FOS and JUND are components of the transcription factor AP-1, which is involved amongst others in gene expression of IL-8 and HMOX-1. Consequently, transcriptional induction of the inflammatory cytokine IL-8 as well as the enzymes HMOX-1 and GSR was detected in plasma-treated THP-1 cells. In addition, alterations in the protein activation levels were analyzed in plasma-treated Jurkat, THP-1 cells and primary monocytes. Since some of the identified target genes are known to be associated with the MAPK pathways, the regulation of these cascades was further investigated by western blot analysis. In all investigated cell types the pro-proliferative signaling molecules ERK 1/2 and MEK 1/2 as well as the pro-apoptotic signaling proteins p38 MAPK and JNK 1/2 were activated in a plasma treatment time dependent manner. In contrast to Jurkat and primary monocytes, the anti-apoptotic HSP27 was only induced in THP-1 cells in response to plasma exposure. Moreover, modulation of cytokine production and secretion was examined in the different immune cell types and co-cultured THP-1 and HaCaT keratinocytes by ELISA or flow cytometry. While Jurkat cells showed no plasma-mediated regulation of cytokine expression, THP-1 cells revealed an increased IL-8 secretion after long plasma time duration (360 s). Additionally, the intracellular expression levels of IL-6 and IL-8 were modulated in primary monocytes by plasma exposure. While short plasma treatment caused no alteration of the number of cells expressing IL-8 an up-regulation of the intracellular IL-6 level occurred after 30 s of plasma treatment. Long plasma treatment times resulted in a significant decrease of the intracellular IL-8 and IL-6 production levels. Furthermore, co-cultured THP-1 and HaCaT cells as well as mono-cultured THP-1 and HaCaT cells were examined regarding their cytokine secretion profile. Here, cells treated with plasma (180 s) as well as LPS and plasma (180 s and LPS) were compared with untreated cells. IL-6, IL-8 and GM-CSF secretion was induced by both plasma and plasma combined with LPS treatment in mono-cultivated HaCaT cells and co-cultured cells. Though, the highest cytokine secretion levels were reached in the plasma and LPS exposed co-culture. In contrast, mono-cultivated THP-1 cells only showed an increased secretion of IL-6, IL-8 and TNFa after incubation with plasma together with LPS exposed medium. In conclusion, this study revealed for the first time the non-thermal plasma-modulated expression of numerous genes and cytokines and the activation state of various signaling cascades in human immune cells. Thus, it contributes to gain a better understanding of the immune-modulatory impacts of plasma that might promote the wound healing process.}, language = {en} }