@phdthesis{Mostertz2006, author = {J{\"o}rg Mostertz}, title = {Studies on Specific and General Defense Strategies against Reactive Oxygen Species in 'Bacillus subtilis'}, journal = {keine Angaben}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-000022-2}, year = {2006}, abstract = {The present work consists of four parts, containing experimental data obtained from analysis of 'Bacillus subtilis' specific and general defense strategies against reactive oxygen species. In the first part, the peroxide and superoxide stress stimulons ob 'B. subtilis' were analyzed by means of transcriptomics and proteomics. Oxidative stress responsive genes were classified into two groups: the gene expression pattern was either similar after both stresses or the genes primarily responded to one stimulus. The high induction observed for members of the PerR-regulon after both stimuli supported the assumption that activation of the peroxide specific PerR-regulon represented the primary stress response after superoxide and peroxide stress. The second part focuses on protein carbonylation in 'B. subtilis' wild-type and 'sigB' mutant cells. The introduction of carbonyl groups into amino acid side chains of proteins represents one possible form of protein modification after attack by reactive oxygen species. Carbonyl groups are readily detectable and the observed amounts can thus serve as an indicator for the severity of protein damage. The resultsdemonstrate clearly that 'B. subtilis' proteins are susceptible to hydrogen peroxide (H2O2) mediated carbonylation damage. The application of low concentrations of H2O2 prior to the exposure to otherwise lethal levels of peroxide reduced markedly the degree of protein carbonylation, which also held true for glucose starved cells. Artificial preloading with general stress proteins resulted in a lower level of protein carbonylation when cells were subjected to oxidative stress, but no differences were detected between wild-type and 'sigB' mutant cells. In the third part, strains with mutations in genes encoding general stress proteins were screenedfor decreased resistance after H2O2 challenge. It was demonstrated that resistance to H2O2 challenge. It was demonstrated that resistance to H2O2 after transient heat treatment, likewise to conditions of glucose starvation, was at least partly mediated by the sB-dependent general stress response. The screening of mutants in sB-controlled genes revealed an important role for the deoxyribonucleic acid (DNA)-binding protein Dps in the context of sB-mediated resistance to oxidative stress underlining previous reports. Therefore, the experimental strategy opens a global view on the importance of DNA integrity in 'B. subtilis' under conditions of oxidative stress. The fourth part includes analysis of a 'B. subtilis' thioredoxin conditional mutant. The thiol-disulfide oxidoreductase TrxA is an essential protein in 'B. subtilis' that is suggested to be involved in maintaining the cytoplasmic thiol-disulfide state even under conditions of oxidative stress. To investigate the physiological role of TrxA, growth experiments and two-dimensional gel electrophoresis were carried out with exponentially growing cells that were depleted of TrxA. The observations indicate that TrxA essentially involved in the re-reduction of phosphoadenosyl phosphosulfate reductase CysH within the sulfate assimilation pathway of 'B. subtilis'.}, language = {en} }