@phdthesis{Vahl2013, author = {Katja Vahl}, title = {Tailored surface and electrode modifications for analytical and biochemical applications}, journal = {Gezielte Oberfl{\"a}chen- und Elektrodenmodifizierungen f{\"u}r analytische und biochemische Anwendungen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001616-5}, year = {2013}, abstract = {Surface and electrode modifications allow the alteration of surface and electrode properties required for certain applications. In the first part of this thesis, a pH sensitive graphite/quinhydrone composite electrode for Flow-Injection-Analysis (FIA) systems was optimized by using polysiloxane as binder material. This allows an easier handling of the electrode. Furthermore, new applications of the FIA system in conjunction with the pH sensitive detection system were developed. The electrode used here in conjunction with a common reference electrode proved to be a very useful potentiometric detector for FIA acid-base titrations of aqueous solutions. Even acid-base titrations in buffered solutions were performed successfully with the FIA system allowing the determination of activities of enzymes, which catalyse reactions with increasing or decreasing proton concentrations. A FIA system was applied to measure calcium and magnesium ions in different water samples by measuring the hydronium ion release during the complexometric reaction between EDTA and calcium or magnesium ions. A method was established to determine sequentially the titratable acidity and the pH of different wine samples. The new FIA method fulfils the official requirements of the \"Organisation Internationale de la Vigne et du Vin\" with respect to reproducibility and repeatability and can be easily adjusted to the legal requirements in USA and Europe. In summary, the first part of this thesis shows that the FIA system in conjunction with the graphite/quinhydrone/polysiloxane composite electrode is very well suited for simple, rapid and automatic determinations of small sample volumes in the areas of water analysis, food analysis or even biochemical analysis, provided that hydronium ions are involved. For all applications, one and the same measuring device without changing the detection system is used. Only different carrier solutions are necessary, which can be provided by a proper stream selector. The second part of this thesis is focused on the modification of gold surfaces of medical devices by treatment with OH radicals. These investigations are based on previous studies of the impact of OH radicals on mechanically polished gold surfaces resulting in a smoothing of the surface by dissolution of highly reactive gold atoms. In this thesis, the effect of OH radicals, generated either ex vivo by Fenton solutions or in vivo by immune reactions, on gold implants was analysed using atomic force microscopy. It was found that there is an analogy between the exposure of gold to Fenton solutions and the exposure of gold to immune reactions. The pre-treatment of gold implants with OH radicals of Fenton solution prevents surface alterations of the gold implants in vivo. This indicates that the in vivo release of gold from implants can be reduced by exposing the gold implants to Fenton solution before implantation. Finally, the modification of gold surfaces by OH radicals was applied to a medical nanodetector, which is coated with a gold layer and functionalized with antibodies, for isolating circulating tumour cells (CTCs) from the blood stream of cancer patients. By treating the gold layer of the nanodetector with OH radicals generated by Fenton solution or by UV-photolysis of hydrogen peroxide, the cytotoxicity of the gold layer after gamma irradiation was reduced to almost zero. This modification of the gold surface with OH radicals allows applying the nanodetector for in vivo applications.}, language = {en} }