@phdthesis{Couwenberg2021, author = {John Couwenberg}, title = {Self-regulation and self-organisation of raised bogs}, journal = {Selbstorganisation und selbstregulation von Hochmooren}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-47375}, pages = {138}, year = {2021}, abstract = {Summary Raised bogs are raised above the regional ground water level and only fed by rain. To be able to be ‘high yet wet’, they have developed intricate self-regulation mechanisms. The most important of these mechanisms in Sphagnum raised bogs is the acrotelm. This upper layer of peat and vegetation shows a distinct gradient from large pores at the top to small ones at the bottom. When the water table drops, water can only flow through small pores and run-off is effectively reduced. Still, the acrotelm has high storativity, which restricts water table fluctuations to this layer. The acrotelm presents a compromise between small pore space to minimise run-off and large pore space to maximise storativity. These two ‘tasks’ of the acrotelm can also be split in horizontal space. The dry hummocks on the surface of a raised bog have much lower transmissivity and storativity than the wet hollows. These two surface elements can be organised in strikingly regular patterns of elongated strings of hummocks and so-called flarks of hollows arranged perpendicular to the slope. The origin of regular string-flark patterns was studied in chapter 2. In a simple, heuristic, spatially explicit simulation model, each cell in a square grid is randomly declared either a hummock or a hollow. The grid is on a slope and water is allowed to flow from each cell to its four neighbouring cells until water tables stabilise. Then, every cells changes state based on its water table: if the water table is low, the cell will more likely be a hummock, if it is high a hollow. If the parameter settings are right, this procedure will result in regular striping patters. Chapter 2 was the first study to search the parameter space for settings that result in patterning. Systematic analysis showed that the parameter space in which patterns develop is sharply delineated, indicating positive feedback mechanisms. Once a pattern develops, water tables in the model diverge: the flarks become wetter and the strings become drier. The hummock and hollow cells have combined into higher order units, the strings and flarks, that emerge as more effective in regulating water flow. Applying the same model for the first time to the dome shape of a raised bog (capther 3), pattern formation appeared to occur on three organisational levels. On the lowest nanotope level, we find strings and flarks, again combined in a string-flark complex, but this complex occurs alongside an all hummock rand and a wet, featureless central plateau. These three mire sites constitute the second, microtope level. On the third, mesotope level we can distinguish different types of bog domes that are defined by different combinations of mire sites. Classical literature on peatland classification used the same approach to classify bog domes, but also other and larger peatland areas. Our modelling shows that the mire sites actually exist as functional units in a self-organising bog and that they are not mere human classification constructs. To test our ideas on self-regulation and -organisation as well as the modelling results, we studied a patterned raised bog in Tierra del Fuego in terms of its plant cover, its water and its peat (chapter 4). The studied bog is almost completely covered by Sphagnum magellanicum. In northern peatlands the different niches from high and dry hummock to low and wet hollow are filled by different species of Sphagnum, each with their specific growth form. In the studied bog, all niches from dry to wet are occupied by Spagnum magellanicum, showing a wide range in growth form. Yet, we found it has only limited genetic diversity that is not linked to these niches and growth forms. Detailed measurements were made along a 498 m long transect crossing the bog, including water table measurements (every metre), vegetation relev{\´e}s (2 × 2 m), hydraulic conductivity just below the water table (n = 246) and hydraulic conductivity in 11 depth profiles to a depth of 2 m (n = 291); the degree of humification of the corresponding peat was assessed in conjunction with the hydraulic conductivity measurements (n = 537). Sphagnum magellanicum moss samples were collected every 2 m along this transect and genotyped (n = 242). In addition, along short, 26 m long transects crossing strings and flarks water table and hydraulic conductivity just below the water table were measured every metre. Sphagnum growth forms were assessed and the vegetation of the entire bog was mapped in 10 × 10 m relev{\´e}s (n = 3322). The simulation model was applied to a generalised form of the bog. There was an almost perfect match between plant cover and water tables. As expected, hydraulic conductivity just below the water table was about 7 times lower in the dry than in the wet measurement spots. These observations are valid on the low level of the nanotope: hummocks and hollows or dry and wet spots in general. Other observations only made sense on higher organisational levels like the microtope. For example, the hydraulic conductivity profiles of the string-flark complex show a gentler gradient than those of the plateau and the rand. The peat in the string-flark complex originates on this level of organisation and combines characteristic of both its dry and wet constituents. On the mesotope level, the simulation model produced a good match with the patterns on the actual dome. We analysed the abundant data on different organisational levels ranging from small single plants to the large mire system of fens and domes of which the studied dome is part. We looked for commonalities and discrepancies to help us better understand how the close link between plants, water and peat functions in reality. The results of all measurements were integrated with information from literature and discussed in the framework of a self-regulating and -organising raised bog. The field measurements considerably sharpened existing theoretical considerations. We identified nineteen hydrological feedback mechanisms. We found that the various mechanisms overlap both in space and time, which means there is redundancy in the self-regulation capacity of the system. Raised bogs, when in a natural state, are among the most resilient ecosystems known; resilience that is provided by feedbacks and back-up systems to these feedbacks. We used our ideas and insights on self-regulation in Sphagnum raised bogs to look for similar patterns and responses in tropical domed peat swamps (chapter 5). We know that in Sphagnum raised bogs the tasks of the acrotelm can be split in horizontal space. When we looked at undisturbed tropical peat swamps with this new search image, we recognised how hummocks of root material and litter and particularly buttress roots regulate run-off and storage of water. We could identify several additional hydrological feedback loops that mirror the mechanisms found in Sphagnum raised bogs. This thesis considerably advances our understanding of raised bogs as self-organising systems. The patterns and processes they display on multiple levels can be seen as a form of ecosystem diversity that exists independent of species and genetic diversity.}, language = {en} }