@phdthesis{Duennbier2015, author = {Mario D{\"u}nnbier}, title = {Plasma jets for life science applications: characterisation and tuning of the reactive species composition}, journal = {Plasmajets f{\"u}r Life-Science Anwendungen: Charakterisierung und Beeinflussung der reaktiven Spezies Zusammensetzung}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002373-9}, year = {2015}, abstract = {The aim of this thesis is to concentrate on the investigation of these ROS\&RNS composition distribution and their production pathways in the gas phase produced by a plasma jet. By understanding the physical mechanisms behind the generation of the ROS\&RNS a precise tuning and design of the composition distribution in the gas phase can be achieved. One crucial physical parameter is the dissipated power inside the plasma. Only if this parameter is known a meaningful comparison of different feed gas settings is possible. Therefore, a concept for measuring the dissipated power inside the plasma for the modified micro-scaled atmospheric pressure plasma jet( µAPPJ) is designed. Additionally, due to achievements within this thesis it is now possible to ignite a homogeneous discharge in argon and helium within the geometry of the µAPPJ. The used feed gas is a determining factor concerning the electron energy distribution function and consequently influencing the production mechanism of the ROS\&RNS. First of all, the electrical characterisation of the modified µAPPJ was performed including the alpha-to-gamma transition. It is shown that the alpha-to-gamma transition power is increasing with increasing frequency. For the first time it is now feasible to investigate the influence of the dissipated power on the neutral gas temperature, the metastable atom densities and the ROS\&RNS production for the modified µAPPJ with argon and helium as feed gas. Due to the possibility of changing the feed gas and controlling the dissipated power a fundamental insight into the production mechanism of the ROS\&RNS generated by the plasma jet is achieved. With rising dissipated power the temperature and the metastable densities as well as the ozone and nitrogen dioxide concentrations are increasing. By adding molecular oxygen and nitrogen to the feed gas of a plasma jet the ROS\&RNS composition can be tuned. However, also the dissipated power is changed by the small amount of admixtures. Due to the developed dissipated power measurements within this thesis it was possible to disentangle the influence of the admixture on the power and on the ROS\&RNS production. If the dissipated power is fixed for the µAPPJ with argon and helium feed gas, respectively, the highest amount of ozone was measured with oxygen admixture in an argon discharge, the highest amount of dinitrogen pentoxide with nitrogen admixture in an argon discharge and the highest amount of nitrogen dioxide with nitrogen admixture in a helium discharge. Beyond the influence of the dissipated power and the molecular admixture on the ROS\&RNS production the feed gas temperature is a crucial parameter for the corresponding chemical reactions. By changing this parameter the distribution of ozone and nitrogen dioxide can be tuned precisely in such a way that with increasing temperature the ozone density goes down and the nitrogen dioxide density rises. Another determinant for the ROS\&RNS composition produced by an atmospheric pressure plasma jet is the influence of ambient air. If the ambient air is changing from pure nitrogen to pure oxygen atmosphere the ozone density produced by the plasma jet is increasing. For the same conditions the nitrogen dioxide has a maximum at an oxygen-to-nitrogen ratio of 1:1. To avoid the influence of the ambient air on the reactive species production the afterglow of the µAPPJ was prolonged with a glass tube. By increasing the amount of molecular admixtures to the feed gas with each in equal quantities a totally different ROS\&RNS composition can be obtained compared without the glass tube. It figures out that for small molecular admixtures the reactive species composition is nitrogen dominated and for higher admixtures it is oxygen dominated. Consequently, by shielding the ambient air from the active effluent and by admixing molecular oxygen and nitrogen the ROS\&RNS composition can be designed.}, language = {en} }