@phdthesis{Binsker2018, author = {Ulrike Binsker}, title = {Characterizing and deciphering the interaction of human platelets and platelet-derived proteins with Streptococcus pneumoniae and Staphylococcus aureus}, journal = {Charakterisierung und Aufkl{\"a}rung der Interaktion von humanen Thrombozyten und Thrombozyten-Proteinen mit Streptococcus pneumoniae und Staphylococcus aureus}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-21213}, year = {2018}, abstract = {Streptococcus pneumoniae (pneumococci) and Staphylococcus aureus (S. aureus) are human-specific commensals of the upper respiratory tract. Every individual is asymptomatically colonized with both bacteria at least once in their life-time. The opportunistic pathogens can affect further organs and invade into deeper tissue. The occupation of normally sterile niches of the human body with the bacteria can lead to local infections such as sinusitis, otitis media and abscesses, or to life-threatening diseases like pneumonia, meningitis or sepsis. A strong interaction between the bacterium and the respiratory epithelial cells is a prerequisite for a successful colonization. This interaction is ensured by bacterial surface proteins, so called adhesins. The binding of the adhesins to the epithelial lineage occurs predominantly indirectly via components of the extracellular matrix (ECM), but also directly to cellular receptors. Pneumococci and S. aureus bind to various ECM glycoproteins, amongst others: fibronectin, fibrinogen, vitronectin, and collagen. Also binding of both pathogens to human thrombospondin-1 has been described. Thrombospondin-1 is mainly stored in the α-granula of thrombocytes (platelets) and released into the circulation upon activation. However, thrombospondin-1 is also produced and secreted by other cell types like endothelial cells, macrophages, and fibroblasts, which gets subsequently incorporated as component into the ECM. So far, no thrombosponin-1-binding adhesins of pneumococci were identified. PspC, Hic, and PavB are important surface-localized virulence factors, which were shown to interact with human ECM and plasma proteins. PspC and Hic bind to vitronectin and factor H, which inhibits the complement cascade of the human immune system. PavB interacts with fibronectin and plasminogen, and a pavB-deficient mutant of S. pneumoniae showed diminished capacity in colonization in a mouse model. Among the surface proteins of S. aureus, only Eap was identified as thrombospondin-1-binding adhesin. Beyond colonization, pneumococci and S. aureus can enter the blood circulation, interact with platelets, and cause their activation. The aggregation of platelets, especially initiated by S. aureus, plays an important role in the clinic, because most of the septic patients develop thrombocytopenia. Surface localized factors of S. pneumoniae triggering platelet activation are unknown to date. In contrast, few proteins of S. aureus with potential to activate platelets, including Eap, were identified previously. This study identified the surface proteins PavB, PspC, and Hic of S. pneumoniae as specific ligands of the human thrombospondin-1. Flow cytometric, surface plasmon resonance spectroscopic and immunological analyses revealed interactions between the pneumococcal proteins and soluble as well as immobilized thrombospondin-1. The use of specific pneumococcal deletion mutants verified the importance of the three virulence factors as binding partners of soluble thrombospondin-1. The results suggest that pneumococci are capable of acquiring soluble thrombospondin-1 from blood as well as utilizing immobilized glycoprotein of the ECM as substrate for adhesion. Furthermore, the thrombospondin-1-binding domain within the pneumococcal proteins was analyzed by use of recombinant fragments of PavB, PspC, and Hic. The binding capacity of thrombospondin-1 increased proportionally with the amount of repetitive sequences in PavB and PspC, and the length of the α-helical region within the Hic molecule. The binding behavior of thrombospondin-1 towards PavB and PspC is comparable with that of the ECM proteins vitronectin and fibronectin, but is unique towards Hic. The localization of the binding domain of the adhesins within the thrompospondin-1 molecule occurred via use of glycosaminoglycans as competitive inhibitors for the interaction. The results suggest that the pneumococcal proteins Hic and PspC target the identical binding region within thrombospondin-1, which differs from the binding domain for PavB. However, all three virulence factors seem to bind in the N-terminal part of thrombospondin-1. Two-dimensional gel electrophoresis, thrombospondin-1 overlay assay and subsequent mass spectrometric analysis identified AtlA of S. aureus as a surface localized interaction partner of human thrombospondin-1. Moreover, a vitronectin binding activity for AtlA was determined. Immunological and surface plasmon resonance binding studies with recombinant AtlA fragments revealed that interactions with both matrix proteins is mediated via the C-terminal located repeats R1R2 of the AtlA amidase domain. Binding of thrombospondin-1 and vitronectin occurred not simultaneously, due to a competitive inhibition. The second part of the study focused on the activation of human platelets by recombinant pneumococcal and staphylococcal proteins. In total, 28 proteins of S. pneumoniae and 52 proteins of S. aureus were incubated with human platelets. The activation of the cells was detected by flow cytometry using the activation markers P-selectin and the dimerization of the integrin αIIbβIII. The proteins CbpL, PsaA, PavA, and SP\_0899 of S. pneumoniae induced platelet activation, however, the detailed mechanism has to be deciphered in further studies. Furthermore, the secreted proteins CHIPS, FLIPr, and AtlA of S. aureus were discovered as inductors for the activation of platelets. In addition, the domains of AtlA and Eap, crucial for platelet activation, were narrowed down. Interestingly, CHIPS, FLIPr, and Eap were described as inhibitors of neutrophil recruitment. Platelets are recently recognized as immune cells, due to the expression of immune receptors. The data obtained in this study highlight a comprehensive spectrum of effects of the S. aureus proteins towards different type of immune cells. Besides the activation of platelets in suspension buffer and plasma, the aggregation of platelets in whole blood was triggered by the proteins CHIPS, AtlA, and Eap. These results suggest a contribution of the proteins during the S. aureus-induced infectious endocarditis. Secretion of the platelet activating virulence factors, which were identified within this study, might represent a pathogenic strategy during S. aureus infection in which a direct contact between S. aureus and platelets is not required or even avoided. In conclusion, PavB, PspC, and Hic of S. pneumoniae and AtlA of S. aureus were identified as interaction partners of human thrombospondin-1. Furthermore, CHIPS, FLIPr, AtlA, and Eap were characterized as platelet activators. This study provides candidates for the development of protein-based vaccines, to prevent bacterial colonization and to neutralize secreted pathogenic factors.}, language = {en} }