@phdthesis{Bhardwaj2016, author = {Gourav Bhardwaj}, title = {Proteomic analysis of endomyocardial biopsies and plasma of dilated cardiomyopathy patients treated by immunoadsorption therapy}, journal = {Proteinanalysen von endomyokardialen Biopsien und Blutplasma aus Patienten mit dilatativer Kardiomyopathie vor und nach Immunadsorptionstherapie}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002664-2}, year = {2016}, abstract = {Dilated cardiomyopathy (DCM) is a myocardial disorder characterised by ventricular dilation with reduced left ventricular ejection fraction (LVEF). Immunoadsorption (IA) followed by immunoglobulin (IgG) substitution (IA/IgG) has been shown to be a promising therapeutic intervention to recover myocardial functions in DCM patients. The beneficial effects of IA/IgG therapy are associated with increased LVEF, decreased left ventricular inner diameter at diastole (LVIDd) and reduced myocardial inflammation. Despite knowing the cardiac benefits of IA/IgG, the precise molecular mechanism induced by therapy is still elusive. Additionally, only ≈60 \% DCM patients treated with IA/IgG demonstrated improved heart function. Moreover, the reasons for this differential outcome among DCM patients after treatment have not been clearly understood. In this study, efforts were made to uncover the therapy induced proteomic changes in the heart of responders (relative change in LVEF ≤ 20\%, LVEF < 5\% absolute value) and non-responders using a global proteomic approach. Apart from it, proteomic profiling of endomyocardial biopsies and plasma was performed to find protein biomarker candidates which might be useful to distinguish responder and non-responder DCM patients before immunoadsorption therapy and support a selective and individualized treatment. To reveal therapy induced myocardial proteomic changes, endomyocardial biopsies of DCM patients before and after therapy were compared. LVEF increased (32 ± 8 to 45±7, p<0.002) and LVIDd decreased (66 ± 6 to 60±6, p<0.040) after therapy in responders, whereas non-responders did not show any significant changes in these clinical parameters. To address the changes in the myocardial proteome induced by therapy, a label-free proteomic approach was applied. The most prominent proteomic differences between both subgroups were observed in cytoskeletal, fibrosis, and extracellular matrix proteins. Therapy linked benefit in responders seems to be highly associated with the lower abundance of fibrotic and extracellular matrix proteins which seems to reflect a lower activity of transforming growth factor-β signaling. To elucidate proteomic differences between responders and non-responders at baseline, endomyocardial biopsies and plasma proteome profiling were performed. Responder and non-responder DCM patients did not show any significant differences in the clinical parameters (LVEF, LVIDd, age, inflammation, etc.) before IA/IgG therapy except for disease duration that was in tendency higher among non-responders. Proteomics profiling of endomyocardial biopsies revealed 54 differentially abundant proteins between responders and non-responders. Among those proteins, Protein S100-A8 and kininogen-1 was found higher whereas perilipin-4 was found lower abundant in responders. Plasma profiling of these subgroups revealed five proteins (S100-A8, S100-A9, C-Reactive protein, lipopolysaccharide-binding protein, and cysteine-rich secretory protein) displaying strong discriminative power between responders and non-responders. Higher abundance of Protein S100-A8 was observed in myocardium as well as in plasma among responders. Protein S100-A8 might be a potential candidate to distinguish responders and non-responders at baseline, and its potential utility at clinical levels must be evaluated. The last objective of the thesis was to establish a workflow for the relative quantitation of phosphopeptides for samples generally obtained in small amounts like myocardial biopsies. To address this question, optimization was performed with HL-1 cardiomyocytes using a PolyMAC phosphopeptide enrichment kit and the effect of TGF-β1 on the phosphoproteome was evaluated as a proof-of-principle study. Using only 200µg protein of each sample up to 2000 phosphopeptides with an efficiency of >90 percent could be covered. In total, upon TGF-β1 incubation alterations of 214, 92, and 53 phosphopeptides were observed after 1, 6 and 24 hours, respectively. Differentially altered phosphopeptides belonged to many signaling pathways including the ubiquitin-proteasome pathway, cytoskeletal regulation by Rho GTPase, calcium signaling, and TGF-β signaling. Thus, in this study a workflow for relative quantitation of phosphopeptides was established that may be later applied to precious biopsy samples. Along with this, TGF- β1 induced phosphoproteome was analysed in HL-1 cardiomyocytes.}, language = {en} }