@phdthesis{Hasan2017, author = {Mahmoud Hasan}, title = {Pharmacokinetics and Disposition of Prolonged-Release Ketamine Tablets for Treatment of Neuro-Psychiatric Diseases}, journal = {Pharmakokinetik und Disposition von Ketamintabletten mit verl{\"a}ngerter Freisetzung zur Behandlung von neuropsychiatrischen Krankheiten}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002917-7}, year = {2017}, abstract = {Introduction: Ketamine (KET) is widely used as anaesthetic drug. Beside its pronounced an-aesthetic effects as caused by antagonism of NMDA receptors, ketamine also causes potent analgesia. Moreover, There are ample new evidences, firstly, that 2R,6R/2S,6S-enantiomers of hydroxynorketamine (HNK), exert neuro-modulating effects by AMPA-receptor activation and, secondly, that the plasma levels of norketamine (n-KET) after oral dosing are higher than after intravenous administration. From the physicochemical point of view ketamine is expected to be a substrate of drug transporters. Thus, it was the aim of this study to separate and quantify KET and its metabolites in human serum, urine and feces; investigate the role of transporter proteins in the intestinal absorption, distribution and elimination of ketamine; and evaluate pharmacokinetics and metabolism of a newly developed prolonged-release keta-mine dosage form to confirm its suitability for chronic treatment of CNS-diseases (e.g. de-pression) according to the new “ketamine metabolite paradigm”. Materials and methods: Quantification of ketamine was done by a LC-MS/MS-based quantifi-cation method on the QTRAP4000 instrument. Samples were extracted by methyl tert-butyl ether after addition of sodium carbonate to liberate the free base; Single transfected MDCKII cells overexpressing OCT1, OCT2, OCT3, and MATE1 or MATE2K, and HEK293 cells over-expressing OATP2B1 were used to study the cellular uptake of ketamine. Inside-out lipovesi-cles were used to determine the affinity of ketamine to the efflux transporter P-glycoprotein (P-gp). Uptake into cells or vesicles was determined by liquid scintillation counting. Func-tionality of all in vitro systems was assured by using in each case appropriate probe sub-strates; The dose-escalation study was performed in five consecutive periods (7 days wash-out) in 15 healthy subjects (5 females and 10 males. 20-35 years, BMI 19.4-27.6 kg/m2). Results: We introduce for the first time the separation and quantification of the active me-tabolites 2R,6R/2S,6S-HNK; Ketamine was shown to be taken up significantly in a time- and concentration-dependent manner by OCT1-3. The affinity to OCT transporters at pH=6.5 was several fold higher than that at pH=7.4. ), ketamine showed a significant but low affinity to P-gp. In contrast to this, we could not detect any transport of ketamine by MATE1 / 2K or OACPT2B1; and PR-KET was safe and well tolerated with higher metabolites productivity, different pharmacokinetic properties and longer T1/2 when compared to IV-KET or IR-KET. Conclusion: the uptake transporters OCT1 \& 3 and the efflux transporter P-gp may play a role in the intestinal absorption of the drug. On the other side, P-gp, MATE1 / 2K and OCT are not expected to contribute significantly to tissue (brain) distribution or renal excretion of ketamine; Moreover, the prolonged-release ketamine undergoes dose-dependent “first-pass” metabolism which generates substantially increased plasma exposure of downstream me-tabolites with potential neuro-modulating effects compared to ketamine after intravenous administration.}, language = {en} }