@phdthesis{Dagamac2016, author = {Nikki Heherson Aldea Dagamac}, title = {Exploring the diversity of tropical myxomycetes : a classical ecological assessment and modern molecular approach}, journal = {Erforschung der Vielfalt der tropischen Myxomycetes : klassische {\"o}kologische Bewertung und moderner molekularer Ansatz}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002523-6}, year = {2016}, abstract = {Myxomycetes are fungus-like protists of the supergroup Amoebozoa found to be abundant in all terrestrial ecosystems. Mainly based on its macroscopically visible fruit bodies, our knowledge on ecology and diversity of myxomycetes is better than for most other protistean groups, but there is still a lacking knowledge about global diversity patterns since tropical regions, especially the old world tropics, are still understudied. In this thesis a combination of classical ecological analyses and modern molecular methods were used to expand the current knowledge on myxomycete diversity and biogeography in the Paleotropics. A number of surveys in the Philippine archipelago are conducted to provide and to add information about the distribution of myxomycetes in the Southeast Asian region. A combination of field collecting and ca. 2500 moist chamber cultures from four unexplored areas in the Philippines, namely, the Bicol Peninsula (746 records, 57 taxa), Puerto Galera (926 records, 42 taxa), Quezon National Park (205 records, 35 taxa), and Negros Province (193 records, 28 taxa), now brings the number of species recorded for Philippines to 150; with one record, Stemonaria fuscoides, noted as new for the Asian Paleotropics. Collecting localities that have more diverse plant communities showed as well higher species diversity of myxomycetes. In congruence with studies from the Neotropical forests, it seems also that anthropogenic disturbances and the type of forest structure affect the occurrence of myxomycetes for the Philippines. Another survey carried out in another paleotropical region, the highlands of Ethiopia, revealed a total of 151 records, with all 39 species found as new for the country. Three records of Diderma cf. miniatum with a strong bright red peridium and one record of Didymium cf. flexuosum with a conspicuous broad reticulation in the spore ornamentation were described and barcoded, since both may represent morphospecies new to science. A number of rarely recorded species, like Didymium saturnus, Metatrichia floripara, Perichaena areolata, and Physarina echinospora showed that resembling to its unique flora, the east African mountain ranges harbor a diverse and distinctive myxomycete assemblage. One incentive of this study was to compile a solid large dataset for the Paleotropical region that is comparable to data obtained from comprehensive studies performed in the Neotropical areas a decade ago. A total of eight surveys (with four comprehensive regional surveys, two from lowland and two from highland, for each region, the Neo- and the Paleotropics) were used, to compare the myxomycete assemblages of both regions. Each survey comes from a region with fairly homogenous vegetation, and includes specimens from both field and moist chamber cultures component. A statistical analysis of species accumulation curves revealed that only between 70 and 95\% of all species to be expected have been found. Even for >1000 specimens per survey these figures seem hardly to increase with increasing collection effort, since a high proportion of species is always represented by a single or a few records only. Both ordination and cluster analysis suggests that geographical separation explains differences in species composition of the myxomycete assemblages much better than elevational differences. 5 The molecular component of this thesis is a phylogeographic study of the widely distributed tropical myxomycete Hemitrichia serpula. It is a morphologically distinct species with golden-yellow fructifications forming a reticulum. However, subtle variation in spore ornamentation points to cryptic speciation within this myxomycete. Using two independent molecular markers, 135 partial sequences of the small subunit (SSU) rRNA (a nuclear but extrachromosomal gene) and 30 partial sequences of the elongation factor 1 alpha gene (EF1A) (a nuclear gene), a study of 135 Hemitrichia serpula specimens collected worldwide revealed the existence of four clades that are likely to represent reproductively isolated biospecies, since each clade shows a unique combination of SSU and EF1A genotypes. A Mantel test with the partial SSU sequences indicated geographical differentiation, giving a correlation coefficient of 0.467 between the pairwise computed geographic and genetic distances, compared with the 95\% confidence interval from 999 permutations (-0.013 to 0.021). Biogeographical analysis of the 40 SSU ribotypes showed clear intraspecific variation and geographic differentiation demonstrating a limited gene flow among the world population. We argue that the distribution of cryptic species in the different clade can be explained by ongoing, but still incomplete speciation. An event-based ancestral area reconstruction using the software S-DIVA employed in RASP showed that the probable origin of the ribotypes was a global dispersal event in the Neotropics. Additional species distribution models that were implemented for the three most prominent clades show different putative ranges. As such H. serpula supports the moderate endemicity hypothesis for protists. In summary, myxomycete assemblages in the Paleotropics (1) displayed a higher diversity than for Neotropical forests, (2) harbor unique taxa that differentiates those assemblages in spite of the expected similar macroecological all over the Tropics, (3) are affected by geographical barriers that likely causes speciation both at a morphospecies and biospecies level, and (4) follow the ubiquitous model in the sense that gene flow mediated by long-distance dispersal of spores is high enough that a species can fill out its entire putative range, but (5) the gene flow is not high enough to prevent variation in regional gene pools, which may lead to speciation and is better explained by the moderate endemicity model. Our data are still too limited to draw a comprehensive picture of the diversity of tropical myxomycetes, but the baseline information compiled with the aid of both classical ecology and molecular approaches from this study are first major steps towards this goal.}, language = {en} }