@phdthesis{Fischer2014, author = {Melina Fischer}, title = {Molecular characterization of segmented \& non segmented RNA viruses exemplary for orthobunya- and lyssaviruses}, journal = {Molekulare Charakterisierung von segmentierten \& nicht segmentierten RNA Viren am Beispiel von Orthobunya- und Lyssaviren}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001986-0}, year = {2014}, abstract = {In this study the potential of molecular RT-PCR based methods for diagnostic or epidemiological investigations concerning negative-sense RNA viruses should be demonstrated exemplary for orthobunyaviruses (segmented genome) and lyssaviruses (non segmented genome). The recent discovery of a novel orthobunyavirus from the Simbu serogroup, Schmallenberg virus (SBV), via next generation sequencing and metagenome analysis led to the development of novel molecular detection methods. Due to the potential emergence of further orthobunyaviruses from the Simbu serogroup, a generic pan-Simbu real-time RT-PCR system was developed. This system was able to detect all tested Simbu serogroup viruses. As additional feature a species classification via sequencing is possible. Moreover, the novel pan-Simbu real-time RT-PCR system seems to offer a broad detection spectrum for orthobunyaviruses in general. Hence, this protocol allows a broad screening of samples predominantly for Simbu serogroup virus genomes but also might allow the identification of some related orthobunyaviruses in mammalian or insect samples. A comparison of the pan-Simbu real-time RT-PCR system with diagnostic real-time RT-PCRs revealed an overall higher sensitivity of the diagnostic assays for SBV detection. The diagnostic SBV-S3 assay convinced with the highest sensitivity and reliability for SBV detection. Additionally, the SBV-M1 assay turned out as highly specific for SBV and therefore is a valuable tool for a precise diagnosis in geographical regions where multiple orthobunyaviruses are endemic. Furthermore, the SBV genome diversity in Germany was investigated using a molecular epidemiological approach. Genome variability was extremely high in the N-terminal region of the putative envelope glycoprotein Gc which might have an impact on immunogenicity or host-cell infection. Phylogenetic analyses indicated that sequence variation is independent of host species and geographical distribution. In contrast to SBV as a novel pathogen, rabies encephalitis (caused by the prototype lyssavirus Rabies virus) is known for more than 4000 years. Thus numerous molecular techniques have been developed for lyssavirus detection, considering the diversity of this genus they all have certain limitations as regards their diagnostic range. Results of a lyssavirus ring trial among European laboratories indicate that RT-PCR could be a highly reliable diagnostic tool if at least two independent tests with broad diagnostic range are applied. Another approach suggested that a change from two-step to one-step PCR strategy or a variation of the RT-chemistry may have a remarkable influence on assay performance. However, no ultimate approach or strategy has been found yet, that would facilitate rabies routine diagnosis or epidemiological surveys on molecular grounds. Thus, there is a need for a potent, reliable and practical system for lyssavirus diagnosis and characterization, suitable as a second diagnostic line next to classical techniques like the fluorescent antibody test. For this purpose a diagnostic two level cascade protocol was developed with emphasis on the most relevant European lyssaviruses. On a first level two independent generic pan-lyssavirus screening assays, targeting different genomic regions, were applied. On a second level two probe-based species-specific multiplex PCR systems for the rapid classification of European lyssaviruses were used. All applied assays displayed an overall highly sensitive and specific detection with an excellent reproducibility and repeatability. Moreover, the diagnostic cascade protocol combines all known advantages of the real-time PCR technology including speed and reduced risk of cross-contamination with improved safety of molecular testing based on a double-check strategy for the screening as well as the confirmatory assays. In the frame of the second Bokeloh bat lyssavirus case in a German bat, the capability of real-time PCR for the quantification of viral loads was demonstrated. Another convenient example for the potential of molecular RT-PCR based methods is the epidemiological investigation of the rabies epizootic in Namibian kudu antelopes. Phylogenetic analyses of a 602 bp fragment of the nucleoprotein gene indicated a separate grouping of the Rabies virus (RABV) isolates from kudu apart from RABV isolates from jackals. Full genome sequencing revealed unique mutations in the glycoprotein gene of RABV isolates from kudu, suggesting an independent rabies cycle in Namibian kudu antelopes. All given examples were used to illustrate the application spectrum of molecular RT-PCR based methods for diagnostic or epidemiological purposes. The advantages of molecular techniques were emphasized and in particular real-time RT-PCR systems proved their fitness for purpose and appear to represent standard techniques for the next decade.}, language = {en} }