@phdthesis{Kabisch2013, author = {Johannes Fritz Kabisch}, title = {Optimization of Bacillus subtilis as an expression system}, journal = {Optimierung von Bacillus subtilis als Expressionssystem}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001546-4}, year = {2013}, abstract = {Bacteria are an integral part of modern biotechnology. They are used to make a variety of products, such as foods, drugs, as well as a multitude of chemicals. In order to increase their production rates molecular biotechnology offers many tuning points, starting from the selection of an applicable host, over its geno- and phenotypical characterization, followed by genetic manipulations for an optimized metabolism and stabilisation of production processes. This work comprises the optimization of Bacillus subtilis as an expression system. It describes the steps taken for selection and genomic characterization of the B. subtilis wild type strain ATCC 6051, the subsequent optimizations of the strain in respect to growth and productivity, as well as the characterization of its behaviour in a variety of cultivation conditions. The B. subtilis strain most commonly found in laboratories around the world is the first sequenced Gram-positive organism B. subtilis 168. Zeigler et al. showed that strain 168 is not a real wild type. Instead it was created through random mutagenesis with X-rays and selected for transformability. This strain has been used as the basis for popular B. subtilis strains in heterologous gene expression such as the extracellular protease deficient WB strains. Growth experiments showed the real wild type strain ATCC 6051 to be superior to its mutated ancestor 168, making it a solid basis for the construction of an optimized B. subtilis expression system. In order to gain a full understanding of the genomic and corresponding physiological differences between the two systems, B. subtilis ATCC 6051 was sequenced and compared to the genome of B. Subtilis 168. Several variations on geno- and phenotypic level could be revealed, that resulted in particular from genes involved in natural competency, the metabolism of amino acids and chemotaxis. This genomically well characterized B. subtilis ATCC 6051 was improved in respect to its application as an expression host. Improvements were achieved through the inactivation of both sporulation and reduction of autolysis, leading to a more robust behaviour during the overproduction and secretion of a reporter enzyme. A positive effect on the activity of an acetoin induced promoter by the addition of second copies for its transcription factors SigmaL and AcoR could be observed. Anaerobic zones and areas with excess glucose caused by insufficient mixing are common conditions in large scale bioprocesses and lead to oscillating conditions for the cells. In turn, this oscillation provokes an excretion of so called overflow metabolites, which can negatively affect the bacterial productivity. Detailed scientific characterizations of industrial scale processes under such oscillating conditions are scarce due to the high costs and logistics involved. A B. Subtilis sporulation mutant was thus examined in respect to its extra- and intracellular metabolites in a scale-down, two-compartment reactor giving hints about conditions the host is exposed to and how it reacts. To improve tolerance thresholds and utilization capacity for such metabolites in B. subtilis, the glyoxylate cycle was transferred from its close relative Bacillus licheniformis into the genome of B. subtilis. This feature enabled our B. subtilis ACE mutant to grow on acetate. The improved strain showed higher tolerance towards excess glucose in a fed-batch as well as higher productivity during the expression of a reporter enzyme in comparison to the wild type. The ACE strain and B. licheniformis showed an increased formation of glycolate during growth with the glyoxylate cycle. This with regard to bacteria undescribed metabolite seems to play a role as a by-product of the glyoxylate cycle. Summarizing, this thesis deals with the characterization and optimization of B. subtilis for growth on overflow metabolites, enhancements of the acoA-expression system and the influence of sporulation and lysis mutants on its activity. Complementary, the host was begun to be characterized in respect to its behaviour in industrial scale processes.}, language = {en} }