@phdthesis{Schaefer2015, author = {Simon Thomas Sch{\"a}fer}, title = {ATP6AP2 is critically involved in adult hippocampal neurogenesis and reveals stage-specific functions for Wnt/{\"s}-Catenin and Wnt/Planar Cell Polarity (PCP) signaling}, journal = {Das Wnt Adapterprotein ATP6AP2 reguliert fr{\"u}he und sp{\"a}te Phasen adulter Neurogenese durch einen funktionellen und stadien-spezifischen Signalkontext von Wnt/{\"s}-Catenin and Wnt/Planar Cell Polarity (PCP) signaling}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002195-8}, year = {2015}, abstract = {The dentate gyrus (DG) of the hippocampus is one of the stem cell housing niches in the adult mammalian brain. Canonical Wingless-type (Wnt) signals provided by the microenvironment are one of the major niche factors that regulate the differentiation of adult neural stem cells (aNSCs) towards the neuronal lineage. Wnts are part of a complex and diverse set of signaling pathways with a wide range of possible interactions. It remains unknown whether different canonical and non-canonical Wnt signals act in a stage-specific manner to regulate distinctive steps of adult hippocampal neurogenesis. Using in vitro assays on adult hippocampal NSCs, we identified an attenuation of canonical Wnt/{\"s}-Catenin signaling responsiveness in the course of neuronal differentiation, while non-canonical Wnt/Planar Cell Polarity (PCP) signaling events progressively increased. Single-cell genetic manipulations were performed by using retroviral vectors to target dividing progenitor cells in the murine hippocampus. Retrovirus-mediated knockdown of ATP6AP2, a recently discovered core protein involved in both Wnt signaling pathways, revealed that the dual role of this adaptor protein is dependent on the signaling context that is present. We were able to confirm its dual role in neurogenic Wnt signaling in cultured adult hippocampal progenitors (AHPs) for both canonical Wnt signaling in proliferating AHPs and non-canonical Wnt signaling in differentiating AHPs. Specific knockdown of ATP6AP2 in neural progenitor cells in vivo resulted in a decreased induction of neuronal cell fate and severe morphological defects of newborn neurons, likely via altering both canonical and non-canonical Wnt signaling. Furthermore, in vivo knockdown of PCP core proteins CELSR1-3 and FZD3 mimicked the maturational defects of ATP6AP2-deficient neuroblasts but did not affect granule cell fate. In summary, the data presented here characterize a transition of Wnt signaling responsiveness from Wnt/{\"s}-Catenin signaling to non-canonical Wnt/PCP signaling in the course of granule cell fate that was confirmed in a human pluripotent stem cell (hPSC)-based model of dentate granule neurogenesis. Our findings suggest that these pathways show stage-dependent activities and regulate distinct steps of adult dentate granule cell neurogenesis. Conclusively, we provide evidence for a stage-specific regulation of fate determination through the Wnt/{\"s}-Catenin pathway and granule cell morphogenesis through the Wnt/PCP signaling pathway, including the FZD3-CELSR1-3 system. Additionally, the Wnt adaptor protein ATP6AP2 is involved in earlier and later stages of adult neurogenesis and its knockdown in vivo resembles all phenotypic features of both canonical and Wnt/PCP signaling mutants.}, language = {en} }