@phdthesis{Kusch2012, author = {Kathrin Kusch}, title = {Characterization and Regulation of Virulence Factors in Staphylococcus aureus}, journal = {Charakterisierung und Regulation von Virulenzfaktoren in Staphylococcus aureus}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001216-8}, year = {2012}, abstract = {Staphylococcus aureus is a pathogenic bacterium infecting the human host. It’s multifaced adaptation to various environmental conditions is mediated by a tight regulation of the virulence factors influencing the host’s immune system. In this thesis two regulators of gene expression were analysed: (i) the global influence of the two-component system SaePQRS and (ii) the regulation of superantigen gene expression by the alternative sigma factor σB. At the outset of this thesis, single target genes induced by SaeRS were known (hla, hlb, cap5, fnbA, coa). In order to get a general idea of the Sae-regulon, the influence of SaePQRS on gene-expression was analysed in two strain backgrounds by proteomics and transcriptomics aproaches. Recapitulatory, expression of at least 18 secreted and two covalently cell-wall bound proteins was decreased following inactivation of the Sae-system. Sae-dependently expressed were, amongst others, well decribed virulence factors like the y-hemolysins HlgA, HlgB, HlgC, LukM and LukF, the innate immune system modulating proteins Efb, CHIPS and SCIN-B as well as the enterotoxin SEB. SaeR acts as an activator of its target genes. Some proteins were detected in increased amounts in the extracellular proteome of the Sae-deficient strain. However, these changes did not occur at the transcriptional level. The expression of virulence factors is determined by other global regulators. No influence of SaePQRS on the transcription of five substancial regulators, namely the Agr-system and its effector molecule RNAIII, the alternative sigma factor σB, the two-component system ArlRS and the DNA-binding protein SarA, could be shown. In the second part of this thesis the issue was broached to the regulation of gene-expression of a subgroup of virulence factors, the superantigens (SAgs) of S. aureus by SaePQRS and σB. In contrast to their well described molecule structure and function, the regulation of their gene expression was largely unknown. Six different S. aureus strains (two laboratory strains and four clinical isolates) encoding one to seven SAg-genes each, were used for analysis of a total of twelve SAgs regarding their transcription and mitogenic activity. The transcriptional units were characterized using Northern-Blotting. The expression of SAgs could be correlated to the respective growth phase. While egc-SAgs were expressed mainly at low optical densities, seb was induced during late growth phase. In contrast, the transcription of sea, seh, sek, tst and sep remained constant and growth-phase independent. The transcriptional dataset was verified using T-cell proliferation assays. The expression of seh, tst and the egc-operon was dependent on σB. A potential σB-dependent promotor could be identified preceeding seo, the first gene of the egc-operon. In contrast, the expression of seb was increased in sigB-deficient background. This might be due to indirect effects. Expression of seb required SaePQRS. Transcriptional datasets were verified by Immuno-Blotting and T-cell-proliferation assays. In conclusion, the same mutation in sigB but in different strain backgrounds could result in opposite phenotypes with respect to their mitogenic activity. Besides well characterized virulence factors, some secreted proteins with so far unknown function belong to the Sae-regulon. Given that the influence of SaePQRS was restricted to virulence factors and induced especially modulators of the innate immune system, it can be assumed, that these proteins potentially play a role in virulence of S. aureus. In the third part of this thesis, one of these potential new virulence factors, namely SACOL0908, was analysed in detail. In cooperation with the group of Prof. Stehle, T{\"u}bingen, the crystal structure was solved. The protein folding of SACOL0908 is new with only minor similarities to described protein structures. Recombinantly expressed SACOL0908 binds to granulocytes. These cells belong to the innate immune system, incorporate bacteria by phagocytosis and kill them. The receptor for SACOL0908 on the surface of granulocytes could not be identified using immunoprecipitation, antibody-blocking assays and functional assays in cooperation with the group of Prof. Peschel, T{\"u}bingen. The gene encoding SACOL0908 was deleted in two S. aureus strain backgrounds (COL and Newman). These mutants are currently in use to characterize their phenotype in mouse-infection studies.}, language = {en} }