@phdthesis{Gazovic2012, author = {Michal Gazovic}, title = {Inter-and intra-annual variations in carbon fluxes in boreal peatlands}, journal = {Inter-und intra-j{\"a}hrlichen Schwankungen der Kohlenstoff-Fl{\"u}sse im borealen Mooren}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001188-3}, year = {2012}, abstract = {Northern peatlands are ecosystems with unique hydrological properties, storing about 400-500 Gt of carbon. As the production rate of organic material is higher than its decomposition, which is slowed down in the wet and cold environment, peatlands store a great amount of carbon. Carbon assimilated from the atmosphere during photosynthesis by plants is partly lost due to autotrophic and heterotrophic respiration as carbon dioxide (CO2), as methane (CH4) or/and as dissolved organic carbon. The proportion of each carbon component is strongly controlled by environmental conditions as temperature, radiation, precipitation and subsequent water table changes and active role of vegetation. With predicted changes in the global climate, changes in the influence of environmental parameters on peatland ecology are expected. Thus thorough research is essential for a better understanding of mechanisms which influence carbon cycling in peatlands. In this thesis, various components of the carbon cycle were studied at two boreal peatland sites (Ust Pojeg in Komi Republic in Russian Federation and Salmisuo in Eastern Finland) using the micrometeorological eddy covariance method. The focus was placed on the temporal changes of the controlling parameters, ranging from a few days during short snow thawing through the rest of the year. At the Salmisuo site, two measurement seasons allowed to address possible inter-annual variation. We observed that diurnal variations in methane emissions which are typically controlled by vegetation during the growing season, might appear during snow melt as a result of the influence of physical factors rather than biological factors. The diurnal pattern in methane emissions was caused by the interaction of the freeze-thaw cycle and near urface turbulence. During the night time, when surface temperatures fell below zero and caused formation of the ice layer, methane emissions were only around 0.8 mg m-2 h-1, however after the increase in temperature and melting of the ice layer they reached peak values of around 3 mg m-2 h-1. The near surface turbulence had a significant influence on methane emissions, however only after the thawing of the ice layer. The effect of changing environmental parameters over the year was further elaborated on a carbon dioxide time series from the Ust Pojeg site. The generally accepted effects of temperature on ecosystem respiration during the night are not stable throughout the year and can change rapidly during the growing season. Using moving window regression analysis I could show that the strength of the exponential relationship between ecosystem respiration and temperature is changing during the year. This was in correspondence with recent publications elaborating on sub-seasonal changes of the controlling parameters. In general, measurements from the Ust Pojeg site represent estimates of annual CO2 and CH4 fluxes with an annual carbon balance of -94.5 g C m-2 and a new contribution to the quantification of trace gases emissions from a Russian boreal peatland. The inter-annual comparison of net ecosystem exchange (NEE) measurements with previously published data on CH4 and DOC flux from the Salmisuo site showed that the NEE of CO2 is the most important component of the carbon balance at this site. However, primary production was not responsible for the inter-annual changes in NEE. Rather, the effects of water table position during the year had a strong influence on ecosystem respiration, which was probably due to the influence on soil respiration, and higher NEE was observed during the year with smaller primary production, but higher water table levels. The effects of higher precipitation and higher water table during the wet year were shown to increase CH4 flux and the export of DOC, but their effects could not compensate for changes in ecosystem respiration. In the presented thesis intra- and inter- annual changes in carbon flux components and their controls, in our case attributed mostly to hydrological conditions in combination with other environmental parameters as temperature and the role of peatland vegetation, are discussed.}, language = {en} }