@phdthesis{Abdullah2015, author = {Mohammed Redha Abdullah}, title = {Functional and structural characterization of DacB and PccL, lipoproteins contributing to pneumococcal pathogenesis}, journal = {Funktionelle und strukturelle Charakterisierung von DacB und PccL-Lipoproteine, die zur Pneumokokken-Pathogenese beitragen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002175-9}, year = {2015}, abstract = {Streptococcus pneumoniae (pneumococci) are lancet-shaped, Gram-positive, alpha-hemolytic, facultative anaerobic human specific commensals of the upper and lower respiratory tract. Pneumococci may convert to pathogenic bacteria and spread to the lungs and blood. In different population groups, such as children, the elderly and immunocompromised individuals, pneumococci can cause local infections such as bronchitis, rhinitis, acute sinusitis, and otitis media as well as life-threatening invasive diseases such as community-acquired pneumonia, sepsis and meningitis. Pneumococci are surrounded by a rigid and complex exoskeleton, the peptidoglycan, also referred to as murein sacculus. The peptidoglycan (PNG) protects the cells from rupture by osmotic pressure and maintains their characteristic shape. The PNG is a heteropolymer made up of glycan strands that are cross-linked by short peptides and during growth the existing murein is continuously hydrolyzed by specific lytic enzymes to enable the insertion of new peptidoglycan. Bacterial cell-wall hydrolases are essential for peptidoglycan turnover and crucial to preserve cell shape. The D,D-carboxypeptidase DacA and L,D-carboxypeptidase DacB of Streptococcus pneumoniae function in a sequential manner. This study determined the crystal structure of the surface-exposed lipoprotein DacB, which differs considerably from the DacA structure. DacB contains a Zn2+ ion in its catalytic center located in the middle of a fully exposed, large groove. Two different conformations with differently arranged active site topology were identified. In addition the critical residues for catalysis and substrate specificity were identified. Deficiency in DacA or DacB resulted in a modified peptidoglycan peptide composition and led to an altered cell shape of the dac-mutants. In contrast, lgt-mutant lacking lipoprotein diacylglyceryl transferase activity required for proper lipoprotein maturation retained L,D-carboxypeptidase activity and showed an intact murein sacculus. Furthermore, this study demonstrated the pathophysiological effects of disordered DacA or DacB activities. Real-time bioimaging of intranasally infected mice indicated a substantially attenuated virulence of dacB- and dacAdacB-mutants pneumococci, while loss of function of DacA had no significant effect. In addition, uptake of these mutants by professional phagocytes was enhanced, while their adherence to lung epithelial cells was decreased. The second part of this study focused on the functional and structure determination of the soluble dimeric pneumococcal lipoprotein PccL. Because of its calycin fold and structural homology with the lipocalin YxeF from Bacillus subtilis, PccL was introduced as the first member of the lipocalin protein family in pneumococci and named “PccL” (Pneumococcal calycin fold containing Lipoprotein). Similar to other lipocalins, the distinct beta-barrel, which is open at one end, is significantly conserved in PccL. Moreover, the application of the in vivo acute pneumonia mouse infection model and the in vitro phagocytosis as well as adherence invasion studies revealed considerable differences in colonization and invasive infection between the wild-type D39 and the pccL-mutant. In conclusion, this study characterized the crucial role of pneumococcal carboxypeptidases DacA and DacB for PGN architecture, bacterial shape and pathogenesis. By applying in vivo and in vitro approaches, a close relationship between PGN metabolism and pathophysiological effects was discovered. In addition, the high resolution structure of DacB has been solved and analyzed and a structure model with a resolution of 2.0 {\AA} is provided. Furthermore, analysis of the PGN composition was applied to indicate the impact of an impaired lipoprotein biogenesis pathway on localization and activity of DacB. The major impact of carboxypeptidases on cell shape and virulence proposes DacB as a promising target for the development of novel drugs or due to its surface exposition also as a promising vaccine candidate. PccL is the first pneumococcal lipocalin-like protein and this study indicated its contribution to pneumococcal virulence. However, the mechanism and the mode of action of PccL are still unknown and have to be deciphered in further studies.}, language = {en} }