@phdthesis{Surmann2015, author = {Kristin Surmann}, title = {Proteomic characterization of host-pathogen interactions using human cell lines infected with Staphylococcus aureus HG001 as a model}, journal = {Charakterisierung von Wirt-Erreger-Interaktionen von Infektionen menschlicher Zelllinien mit Staphylococcus aureus HG001 durch Proteomanalysen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002133-3}, year = {2015}, abstract = {Staphylococcus aureus is a commensal that colonizes the skin and mucosa of 20-30\% of the human population without leading to symptoms of diseases. However, it is also the most important cause of nosocomial infections. Those range from minor skin infections to life-threatening diseases such as pneumonia, endocarditis or septicaemia. Development of strains with resistance against many antibiotics complicates the situation further. The variety of strains with their various properties is one reason why no successful vaccine has been introduced to the market, yet. Therefore, efficient strategies for prevention and therapy of these dangerous infections are urgently needed. To accomplish these goals, the understanding of molecular interactions between host and pathogen is indispensable. Within this dissertation, several internalization experiments were performed aiming to investigate the interaction of S. aureus HG001 and human cell lines upon infection on the protein level. In order to obtain sufficient amounts of proteins for comprehensive physiological interpretations, it is necessary to enrich bacteria, secreted bacterial proteins or infected host cells upon internalization. In the framework of this thesis, bacteria which continuously produce green fluorescent protein (GFP) were employed. With that it was possible to sort bacteria from lysed host cells by flow cytometry or to separate host cells carrying bacteria after contact from those which did not. Subsequently, the proteins were proteolytically digested and peptides were analyzed by mass spectrometry in a gel-free proteomics approach. To allow such analyses also for staphylococci which do not produce GFP, such as clinical isolates, an additional protocol was developed. Prior to the infection, bacteria were labeled with fluorescent or para-magnetic nanoparticles. Afterwards bacteria could be separated from host cell debris by fluorescence-based cell sorting or with the help of a strong magnet. In order to cover also important secreted virulence factors of S. aureus HG001, phagosomes and engulfed bacteria and secreted proteins were isolated from infected host cells. Further steps of protocol optimization included improved bacterial cell counting by fluorescence-based flow cytometry, enhanced data analysis by combination of different search algorithms, and comprehensive functional annotation of proteins of the applied strain by sequence comparison with other strains and organisms. First, the proteome adaptation of internalized S. aureus HG001 and the infected A549 host cells was investigated during the first hours of infection. It became clear, that the bacteria replicate inside the host during the first 6.5 h. After internalization the levels of bacterial enzymes involved in protein biosynthesis decreased. Furthermore, bacteria adapted their proteome to the harsh intracellular conditions such as oxygen limitation, cell wall stress, host defense in terms of oxidative stress, and nutrient limitation. After contact to S. aureus HG001, A549 cells produced increased amounts of cytokines (e.g. IL-8, IFN-γ) in comparison to non-treated A549 cells. In addition, activation of the immunoproteasome and hints of early apoptosis activity were observed. Afterwards, the response of S. aureus HG001 to internalization by A549, S9 or HEK 293 cells was compared on the proteome level. It was obvious, that the adaptation to stress and the reduced protein synthesis are conserved mechanisms. Host dependent differences were detected especially in the energy metabolism and the synthesis of some amino acids. Additionally, bacteria showed different intracellular replication patterns depending on the host cell line. A higher percentage of extracellular bacterial proteins was found in isolated phagosomes compared to the sorted samples. Selected low abundant virulence factors could be quantified at two points in time after infection with the help of the sensitive single reaction monitoring (SRM) method. Further, a heterogeneous mixture of several phagosomal maturation steps was present during the first 6.5 h after infection. Finally, the gel-free proteome analyses could be applied to investigate Bordetella pertussis, the cause of whooping cough, during iron limitation and after internalization, and the results were compared to the S. aureus HG001 data.}, language = {en} }