@phdthesis{Nobili2016, author = {Alberto Nobili}, title = {Improving biocatalysts via semi-rational protein design - Use of a multiple sequence alignment platform to reduce screening efforts and facilitate hit identification}, journal = {Verbesserung von Biokatalysatoren mittels semi-rationalen Proteindesigns - Verwendung einer multiplen Sequenzalignment-Plattform zur Reduzierung des Screening-Aufwands und Vereinfachung der Hit-Identifizierung}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002620-7}, year = {2016}, abstract = {The synthesis of valuable chemicals via traditional chemical methods can be often outperformed by the use of enzymes because of their excellent chemo-, regio- and stereoselectivity in aqueous solvents at ambient temperatures. On the other hand, enzymes often suffer from several limitations that hamper their industrial application. Protein engineering is commonly applied to overcome these limitations although the generation and the validation of mutants is often a laborious process that may not lead to the desired results within reasonable time frames. This thesis focuses on engineering the enantioselectivity and the substrate scope of industrially relevant enzymes, such as esterases and transaminases. Semi-rational protein engineering was employed to identify improved variants for the synthesis of valuable chemicals ensuring a reduced screening effort. Compared to previous works, 3DM’s applicability was extended to the study of correlated mutations and proved effective in the acceleration of the comprehension and in the mutation of these enzymatic scaffolds. Semi-rational approaches require an extensive amount of information such as protein structures, reaction mechanisms, previous mutational experiments reported in literature and a considerable amount of amino acid sequences from similar proteins to analyze amino acid distributions and correlated mutations. Here, we have exploited 3DM as a tool that can combine all this wealth of information: 3DM is a convenient solution to retrieve and integrate information simplifying decision making in the planning of a semi-rational mutant library since in 3DM’s multiple sequence alignments (MSA) is summarized Nature’s screening process for alternative variants. Furthermore, naturally evolving enzymes often require mutations at more than one position for the acquisition of a new property. Such mutations generate patterns that are recognized by the 3DM algorithm, which creates networks that can be investigated to design strategies that aim to improve the property of interest. Finally, these correlated mutations are connected to the mutations described in publications covered in the PubMed database, thus helping to investigate the role certain positions might play in the network. Article I shows that it is possible to improve the enantioselectivity of an esterase towards a highly symmetrical substrate while drastically reducing the screening effort. This was achieved through the creation of libraries that limit the variants to those identified in the 3DM alignment. Article II shows that networks of correlated mutations are composed of positions that may cluster around a function. These functions can be investigated because 3DM connects the positions in the network to their related publications. In this article, a mutant of the esterase PFE-I from Pseudomonas fluorescens was generated having increased enantioselectivity in the hydrolysis of important target compounds. Article III suggests that the in silico modelling software YASARA, combined with the use of the 3DM database, can further reduce the screening effort: it was possible to identify a hot-spot because both the 3DM database and YASARA docking studies, indicated its importance. This led to a further improved enantioselectivity of the enzyme variant identified in Article II. Article IV shows how MSA may be used to get structural insights into the catalytic properties of enzymes with documented activity. The study of the patterns observed in a large subfamily alignment allowed the definition of the structural determinants important for the substrate recognition in amine transaminases. Article V and VI apply the knowledge acquired for the improvement of the substrate scope in the amine transaminase from Vibrio fluvialis.}, language = {en} }