@phdthesis{Huebner2012, author = {Marko H{\"u}bner}, title = {An infrared absorption study of surface stimulated species conversion in low and atmospheric pressure plasmas}, journal = {Infrarotspektroskopische Untersuchungen von oberfl{\"a}chenstimulierten Stoffwandlungen in Nieder- und Atmosph{\"a}rendruckplasmen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001320-0}, year = {2012}, abstract = {In the framework of the current work has been the plasma initiated and surface catalysed species conversion studied in low pressure and atmospheric plasmas. The aim of the work is to improve the understanding of the internal processes in order to increase the energy efficiency as well as the selectivity of the reaction products of future plasma devices. Beside many technical applications of plasmas, air purification shows great potential. Over the last decades, plasma based pollution control has proofed its ability to remove harmful contaminants or annoying odours from an air stream. However, the energy efficiency and the selectivity of the products are a remaining challenge. Motivated by these issues, a multi stage packed-bed reactor has been used to remove admixed ethylene and toluene from an air stream. It has been found that the maximum toluene destruction has been 60\%, whereas ethylene has been nearly completely removed. The specific energy β has been between 120 and 1600 JL-1. Fourier Transform Infrared spectroscopy, FTIR spectroscopy, has been used to identify and quantify the species H2O, CO2, CO, O3, HNO3, HCN, CH2O, CH2O2, N2O and NO2. However, none of these experiments led to the detection of NO. The embedment of packing material into a plasma volume leads to increased surface effects. In order to study them, the inner side of a tube reactor, made of Pyrex, served as the surface under study and has been exposed to a rf plasma for 1h. The surface effects of the plasma treatment have been investigated indirectly by studying the oxidation of NO into NO2. After the plasma exposure, the reactor has been evacuated and filled with a gas mixture of 1\% NO in N2 / Ar. Both species have been measured using quantum cascade laser absorption spectroscopy, QCLAS. It has been found that, using oxygen containing plasmas, the NO concentration decreased whereas the NO2 concentration increased. Therefore, oxygen containing plasmas are able to deposit oxygen on the surface. The filling with NO leads to the oxidation via the Eley-Rideal mechanism. A simplified model calculation supports these assumptions. For a more comfortable application of the QCLAS, a compact multi channel spectrometer has been developed, TRIPLE Q. It combines the high time resolution with the possibility to measure the concentration of at least three infrared active species simultaneously. Due to the high time resolution, a huge number of spectra have to be analysed. In order to calculate absolute number densities, an algorithm has been developed which automatically treats typical phenomena like pulse jitter, rapid passage effect or variations of the intensity of the laser pulses. The gas temperature is an important parameter in plasma physics. Using the TRIPLE Q system, the gas temperature has been determined for pulsed dc plasmas. For this case, NO has been used as a probe gas. From the spectra, the temperature has been calculated using the line ratio method. The relative intensity of the absorption structures of NO at 1900.5cm-1 and 1900.08cm-1 depend on the temperature. Therefore, the ratio has been used to calculate the gas temperature with a time resolution in the μs range. Vibrationally excited nitrogen can be an energy reservoir that plays an important role in plasma chemistry. In N2 / N2O plasmas, vibrationally excited N2 can undergo relaxation via a resonant vibration vibration coupling between vibrationally excited N2 and N2O. Due to such an efficient energy transfer, the method allows one to study the relaxation of vibrationally excited N2. Using this method, molecules, which are not infrared active, can be monitored. This approach has extended the field of scientific and commercial applications of the QCLAS.}, language = {en} }