@phdthesis{Gall2014, author = {Markus Georg Gall}, title = {Investigations on enantioselectivity and thermostability of carboxylesterases by means of protein engineering}, journal = {Untersuchungen zur Enantioselektivit{\"a}t und Thermostabilit{\"a}t von Carboxylesterasen mittels Protein Engineering}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001926-3}, year = {2014}, abstract = {In this thesis several methods of protein engineering were applied to explore and increase enantioselectivity and thermostability of certain carboxylesterases and to better understand the relationship between sequence, structure and function. For example, we were able to confirm the observed conservation of motifs like GX/GGGX and GXSXG, which was reported earlier. Yet, even more details were revealed and some were designated in numbers. However, the numbers may vary when even more sequences will be available, but the trend should remain the same. The power of the ABHDB lies in the information available throughout the very diverse and quite large superfamily. Structural equal positions can be easily compared and analysed regarding mutations, correlated mutations, prevalence etc., and visualization is simplified through direct output with YASARA software. The ABHDB was the first structural alignment of such a large number of known enzymes of the alpha/beta-hydrolase fold superfamily. With methods of rational protein engineering we were able to show that there is little flexibility of the GGG(A)X motif for the eukaryotic enzyme PLE 1 and the natural motif appears to be a good solution for high activity and enantioselectivity of PLE 1 in the conversion of tertiary alcohol esters. In a focused directed evolution approach, we were able to identify variants of BsteE with moderate, but significantly increased enantioselectivity in the kinetic resolution of tetrahydrofuran-3-yl acetate, and hence, were able to proof that the concept of ‘small but smart’ libraries is an efficient way to find improved mutants, while the screening effort was reduced. Moreover, we were able to show that the domain exchange enhanced the thermostability of BsubE, while expression level and activity were maintained or increased, respectively. Despite the great achievements and possibilities at present, we are not yet in the position to directly modify the gene to alter the structure in a complete predictable fashion to improve functional properties as imagined by Ulmer (1983). Nevertheless, substantial changes can be targeted and as demonstrated in this work, several broadly applicable methods are at hand. Furthermore, bioinformatics tools play an essential role in planning of experiments, analysis and interpretation.}, language = {en} }