@phdthesis{Peper2010, author = {Jan Peper}, title = {Semi-desert vegetation of the Greater Caucasus foothills in Azerbaijan: Effects of site conditions and livestock grazing}, journal = {Die Vegetation der Halbw{\"u}sten am Fu{\"s} des Gro{\"s}en Kaukasus in Aserbaidschan: Einfl{\"u}sse von Standortfaktoren und Beweidung}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-000879-8}, year = {2010}, abstract = {This dissertation evaluates the effects of site conditions and livestock grazing on the vegetation of Azerbaijan’s winter pastures. We improved methods to estimate grazing intensity in vast rangelands and enhanced an approach to detect discontinuities in vegetation changes along environmental gradients. All analyses use field data from the semi-arid rangelands of Gobustan and Jeiranchel, at the foothills of the Greater Caucasus mountains. The data set comprises 313 vegetation relev{\´e}s, each sized 100 m², based on a pre-stratification using topographical parameters. Additionally, we included data from farm transects and exclosure experiments. For each plot, selected site and soil variables were determined. VEGETATION AND SITE CONDITIONS: By means of cluster analysis, we derived 16 vegetation types with a total of 272 vascular plant species. Our vegetation classification, which is closely linked to site conditions, is an important groundwork for adapted rangeland management and monitoring. The study areas are dominated by semi-deserts with a high coverage of dwarf shrubs, and the mean number of vascular plant species was found to be about 28 per 100 m². According to ordination analysis (NMDS), species composition changes primarily along the altitudinal gradient, gradually proceeding from the Salsola nodulosa semi-deserts of the lowest parts (below 300 m a.s.l.) to the Salsola ericoides and Artemisia lerchiana semi-deserts of the upper regions (300–650 m a.s.l.). Soil salinity and carbonate concentration decrease as altitude increases. A second gradient reflects grazing intensity. One plant community that is typically found on intensively grazed sites in the vicinity of farmyards stands apart from the rest, which are subject to lower grazing and trampling pressures. A third factor that differentiates plant communities is the sand concentration of the soils. Additionally, communities that occur on steep slopes differ from communities that occur on level terrain. EXCLOSURE EXPERIMENTS: Exclosure experiments revealed that short-time abandonment of grazing leads to an increase in the number of annual species, in vegetation coverage, and in the heights of forbs and grasses. Clipping experiments indicated that the herbaceous species show hardly any compensatory growth in response to grazing. ESTIMATING GRAZING INTENSITY: A recurrent theoretical problem in rangeland research is the spatial modelling of grazing intensity around grazing hotspots like farms or watering places, the so called piospheres. In a widely used approach, grazing intensity is assumed to decrease in direct proportion to the distance from a hotspot. The resulting response patterns, which relate characteristics of the vegetation or site conditions to grazing intensity, are often nonlinear, and have been interpreted as indicating threshold changes or diff erent state-and-transitions along grazing gradients. However, we show that these ‘thresholds’ are usually geometrical artefacts. Taking into account the concentric structure of grazing hotspots, we suggest a new approach that approximates grazing intensity as the ratio of the total number of livestock kept at the farm to the distance between a given plot and the hotspot centre. Our approach is a simple yet significant improvement over current approaches because it enables us to merge or compare data from different sampling sites and because the approximation is in direct proportion to other grazing indicators like dung density or soil salinity. SPECIES TURNOVER PATTERNS: Combining our new grazing pressure model with species presence/absence data, we modelled vascular plant species responses, patterns of species richness and species turnover along grazing gradients on farm transects in Gobustan. The derived typical species response pattern along the finite grazing gradient is a sigmoid decrease. Species richness declines monotonically with increasing grazing intensity and thus conforms to generally acknowledged assumptions on the relationship between species richness and grazing pressure in semi-arid rangelands. Species turnover along the gradient was calculated using the slopes of species response curves. At first sight, the resulting pattern gives evidence for a discontinuous change. However, it ranges within the 95 \% confidence interval of a null model based on assumptions of the individualistic continuum concept. Thus, species composition seems to change continuously along grazing gradients in Gobustan. This new null model approach can probably be adapted and applied to all ecological gradients and is useful for the validation of individualcontinuum or community concepts.}, language = {en} }