@phdthesis{Scharnweber2015, author = {Tobias Scharnweber}, title = {Dendroecology of Beech \& Oak. Past growth and future development - how climate, site conditions and strong environmental shifts influence growth performance of Fagus sylvatica (L.) and Quercus robur (L.) in northern Central-Europe}, journal = {Dendro{\"o}kologie von Buche \& Eiche. Wachstum in der Vergangenheit und k{\"u}nftige Entwicklung - Einfluss von Klima, Standort und starken Umweltver{\"a}nderungen auf Wachstumsmuster von Fagus sylvatica (L.) und Quercus robur (L.) im n{\"o}rdlichen Zentraleuro}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002265-9}, year = {2015}, abstract = {Global change, amongst others characterized by increasing temperatures, altered precipitation patterns, an increase of extreme climatic events and continued atmospheric depositions of pollutants, is expected to severely impact forest ecosystems worldwide. The complex interplay between different factors acting upon tree growth, combined with regional patterns in climatic change calls for a region specific evaluation of the possible consequences on forest ecosystems. For northeastern Germany regional climate models identify a rise in temperatures and a change in precipitation patterns. Drier summers and wetter winters together with an increase in extreme weather events are seen as the most pronounced changes that will occur during the 21st century. In this thesis I analysed past growth rates and climate-growth relationships in different stands of beech (Fagus sylvatica L.) and oak (Quercus robur L.) along a gradient of decreasing precipitation in a space for time approach. Special attention was paid to the influence of summer drought, soil waterlogging and the importance of site conditions in modulating the reactions to these climatic stressors. Departing from these retrospective analyses, future growth trends are modelled for beech, oak and Scots pine (Pinus sylvestris L.), based on projections of a regional climate model until the year 2100. Furthermore, I studied the influence of sudden and extreme shifts in hydrological conditions on the growth of oaks in a drained peatland that was subject to catastrophic rewetting. All analyses of this thesis are based on ring-width and wood anatomical features applying a variety of dendrochronological methods. The gradient approach revealed similar climate-growth relationships for beech and oak on drought exposed, sandy sites, where water availability during early summer was the main growth-limiting factor for both species. Decreasing precipitation rates towards the East are associated with higher drought susceptibility, especially for beech. As a result, competitive superiority of beech over oak decreases. In a drier future the competitive balance between the two species may shift (rank reversal). During the past decades beech has shown larger interannual growth variability and a higher number of growth depressions. These changes might indicate that increasing temperatures and climatic variability are already affecting its growth patterns and climate sensitivity. This is in line with the prospective modelling approach. According to our models, growth trends will turn negative for beech and oak towards the end of the 21st century, with beech showing the highest growth reduction (23\% compared to the reference period 1971-2000). For pine, modelled growth rates show only minor changes. Whereas beech and oak shared a high common signal on the dry sites, the two species differed in high frequency ring patterns on the wet sites. On poorly drained, loamy soils beech, with its superficial root system, suffered from summer droughts. In contrast, on these sites ring-width of pedunculate oak was not correlated to summer moisture conditions resulting in differing interannual ring patterns between dry and wet sites. Wet periods with high soil water saturation did not have a negative influence on the growth of either species. Such a lack of response is not surprising for oak, which is generally known as rather tolerant to soil waterlogging, but it indicates an unexpectedly high tolerance of beech to stagnating wetness. Using the natural laboratory of an oak forest that suffered a catastrophic flooding I could show that slower grown trees that had likely been suppressed displayed a higher adaptive capacity compared with bigger, dominant trees. Many of the previously dominant individuals died within 18 years after the event. Trees that survived the groundwater rise displayed a typical ring pattern: growth was suppressed for a few years, but afterwards recovered and even surpassed previous growth rates, most likely as a result of competition release. The sudden hydrological change left a clear imprint in ring patterns and wood anatomical features in both the dying and the surviving trees. This differentiated imprint may be helpful for a better interpretation of growth patterns found in subfossil bog oaks, an important climate proxy of the Holocene. The insights gained from this thesis support existing concerns about drought induced growth decline for oak, but especially for beech. Changes in precipitation patterns might lead to wetter conditions during winter, but these will likely have only little effect on growth. Both s show rather high resilience to stagnating wetness. More likely, it are extreme events like prolonged droughts or heavy rainfalls that might breach thresholds in the ability of the two species to cope with too much or too little water. Such extreme events thus pose a strong risk to the future growth performance of both oak and beech.}, language = {en} }