@phdthesis{Abebe2020, author = {Bayew Tsega Abebe}, title = {In Vitro to In Vivo Extrapolation of Pharmacokinetic Drug Interactions between Clarithromycin and Ranitidine with Trospium Chloride to Evaluate Probe Drug Characteristics for P-glycoprotein and Organic Cation Transporter Functions in Human}, journal = {In-vitro In-vivo-Extrapolation pharmakokinetischer Arzneimittelwechselwirkungen zwischen Clarithromycin und Ranitidin mit Trospiumchlorid zur Untersuchung der Probecharakterisierung von P-Glykoproteinen und organischen Kationentransportern beim Menschen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-34845}, year = {2020}, abstract = {Oral administration of drugs is the most common, convenient, safest and economical route of drug administration. There is lack of established tools to study the function of transporters in the intestinal absorption of drugs. Because of its favorable physico-chemical, pharmacokinetic and pharmacodynamic characteristics, trospium could be potentially used as a probe substrate to study the function of drug transporters. Therefore, this study was conducted to examine the suitability of trospium chloride as a probe drug to study the function of multidrug transporters in the human body. To this end, two randomized, controlled, four-period, cross-over pharmacokinetic drug interaction studies of oral and intravenous trospium with co-medication of oral clarithromycin or ranitidine were performed in 24 healthy subjects to mechanistically characterize the role of P-gp, OATP1A2, OCT1, OCT2, MATE1 and MATE2-K in the absorption and disposition of trospium. The contribution of the drug transporters in the absorption and disposition of trospium were examined in isolated systems using in vitro uptake and inhibition assays in transporter transfected human cell lines. OCT1 (Vmax = 0.8 ± 0.1 nmol/min × mg) is a high capacity transporter of trospium compared to OCT2 (Vmax = 0.04 ± 0.01 nmol/min × mg). But the OCT2 (Km = 0.5 ± 0.1 µM) transporter demonstrated a high affinity in the transport of trospium compared to OCT1 (Km = 17.4 ± 2.1 µM). OCT1 genetic alleles *2, *3, *4 and *7 resulted in significant loss of activity and the alleles *5 and *6 caused complete loss of uptake of trospium. The common OCT2 genetic allele Ser270 caused slight but significant increase in activity of OCT2. Ranitidine inhibits OCT1 (IC50 = 186 ± 25 µM), MATE1 (IC50 = 134 ± 37 µM) and MATE2-K (IC50 = 35 ± 11 µM)-mediated uptake of trospium in vitro. But it is a weak inhibitor of OCT2 transporter (IC50 = 482 ± 105 µM). Using FDA and EMA in vitro to in vivo extrapolation models, ranitidine was predicted to have a potential inhibition effect on intestinal OCT1 ([I]2/IC50 ~40), renal MATE1 ([I]1/IC50 ~0.02) and MATE2-K ([I]1/IC50 ~0.1) transporters in vivo. Clarithromycin was predicted to cause DDI by inhibiting P-gp-mediated efflux of trospium at the intestine ([I]2/IC50 of ~310) and hepatocytes ([I]3/IC50 ~1). Therefore, co-medication of oral clarithromycin was expected to result in an increase in oral absorption and hepatic clearance of trospium but not changes in distribution volume. In healthy subjects, oral trospium is slowly (MAT ~10 h) and poorly (F ~10 \%) absorbed from the jejunum and cecum/ascending colon, widely distributed into the body (Vss = 5 - 6 l/kg) and slowly eliminated (t1/2 = 9 - 10 h) majorly via renal glomerular filtration and tubular secretion (CLR ~500 ml/min). After co-medication of clarithromycin (inhibitor of P-gp), on the contrary to our IVIVE prediction, we found a non-expected but significant expansion of the shallow and deep distribution spaces for trospium by ~27 \%. A single dose administration of trospium with co-medication of ranitidine (inhibitor of OCT1) resulted in no effect on the intestinal absorption of trospium. But the renal clearance of trospium decreased slightly (15 \%) but significantly. Intravenously administered trospium (2 mg TC) might be a suitable probe drug to evaluate the effects of a P-gp inhibitor on distribution of a drug. Oral trospium chloride can be selected for DDI studies with new chemical entities (NCE) with predicted inhibitory potential on OCT1 and P-gp and which are available after oral absorption along the small intestine and in the cecum/ascending colon. Another kind of application of trospium chloride might be pharmacogenomics studies in subjects with functionally relevant polymorphisms of P-gp and OCT1 or in patients with suspected transport failure due to intestinal diseases. The function of the efflux transporters MATE1 and MATE2-K in the PTC of the kidneys can be well assessed with the probe drug trospium by measuring its renal clearance.}, language = {en} }