@phdthesis{Pfannmoeller2011, author = {J{\"o}rg Pfannm{\"o}ller}, title = {Whistler Wave Propagation in Inhomogeneous Plasmas}, journal = {Whistlerwellen-Ausbreitung in inhomogenen Plasmen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001027-8}, year = {2011}, abstract = {In this thesis wave propagation in the whistler wave frequency range ωci≤ω≤ωce in the linear magnetized plasma experiment VINETA is investigated. The plasma is generated by a helicon antenna and has a diameter of about 10 cm. Whistler waves are launched by a loop antenna with a diameter of 4.5 cm and the fluctuating magnetic field is mapped by Ḃ-probes. Experiments are carried out for plasma parameters γ≤1/ √ 2 under which the only transversal polarized wave according to plane wave dispersion theory is the whistler wave. Due to the small collision frequencies ν≪1 cyclotron damping of whistler waves in this parameter regime is dominant and depends only on the electron plasma-β. The influence of the inhomogeneous plasma profile and excitation by a loop antenna is investigated by measurements of the fluctuating magnetic field perpendicular to the ambient magnetic field in azimuthal and radial axial planes. A mode characterized by the number of wave lengths m in the azimuthal direction is found. The mode structure is modified by the specific shape of the plasma density profile. Profiles with a homogeneous density inside the plasma radius are found to posses a comparably simple mode structure. An agreement in the mode structure of full-wave simulations in three dimensions, including a Gaussian density profile and excitation of the wave by a loop antenna, with the experimental results is found. Conclusions on the spatial structure of the excited mode are drawn using the simulations which predict excitation of an m=2 mode. The wave is found to be ducted within the plasma radius over a wide parameter range. A Helmholtz decomposition of the simulations electric field exhibits the fluctuating space charge as the dominant source for the electric field, while the contribution due to induction is negligible. The magnetic field is given partially by the electron and displacement current. Both contributions to the magnetic field are of the same order of magnitude. The frequency dependency of the excited modes spatial damping increment is investigated using measurements of the magnetic fluctuations along the symmetry axis of the plasma. In order to illustrate the parameter dependency, the electron plasma-β is varied over two orders in magnitude in the range β = 4·10-4 - 2.4·10-2. The experimental result for the spatial damping increment of the mode yields a strong damping for wave frequencies ω/ωce > 0.5 at maximum plasma-β, which shifts to higher frequencies with decreasing β. The parameter dependency of the damping for a fixed frequency is studied in an axial ambient magnetic field gradient. In both cases an excellent agreement between the experimental result and predictions for cyclotron damping from plane wave dispersion theory is found.}, language = {en} }