@phdthesis{Ivanova2011, author = {Oxana Ivanova}, title = {Internal structure of polyelectrolyte multilayers on nanometer scale}, journal = {Innere Struktur von Polyelektrolyt Multischichten auf Nanometerskala}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-000942-0}, year = {2011}, abstract = {This thesis presents the results of experimental investigations of the vertical and lateral properties of polyelectrolyte multilayer films (PEMs) adsorbed on a solid support. PEMs are a new class of organic thin films based on self-assembly layer-by-layer (LbL) processes of oppositely charged polyelectrolytes (charged polymers). The LbL assembly technique allows precise control of film thickness within a few nanometers and makes PEM systems especially interesting for technical applications. Thin films are prepared by alternating exposure of a hydrophilic substrate to solutions of oppositely charged polyelectrolytes. In this work, synthetic polycation poly (allylamine hydrochloride) (PAH) and polyanion poly (styrene sulfonate) (PSS) have been used. Range and amplitude of the electrostatic force during PEM build-up, has been shielded by use of high salt concentration in the deposition solution. As a foundation of any theory, role of non-elecrostatic (secondary) forces is explored. Four complementary methods have been combined to investigate the properties and composition of PEMs. X-ray reflectivity is sensitive to electron density gradients, and therefore provides information about film thickness, average electron density and interfacial roughness between materials of different electron densities (like PEM and air). Neutrons are the unique probe that is sensitive to the internal order of the multilayers (scattering length density variation) due to selective deuteration of the layers (PSS replaced by PSS\_d). Therefore neutron reflectivity at V6 beamline, at the research reactor BER II, Helmholtz Centre for Materials and Energy (former Hahn-Meitner-Institute), was used in this work. Ultraviolet-visible (UV-Vis) light induces the characteristic absorption peak of polyelectrolytes and metallic nanoparticles, therefore with UV-Vis absorption spectroscopy is possible to probe the aggregation of metallic nanoparticles embedded into PEM by measuring their absorption spectra (imaginary part of the refraction index). Atomic force microscopy (AFM) allows to observe lateral structures at nano-level and to obtain surface topology of the films. Application of only small forces (pN) is achieved by use of a intermittent contact (tapping) mode in air. Summarizing the main results, the unambiguous parametrization of the investigated system for neutron reflectivity measurements enables to obtain detailed information about internal interfaces. New approach for polyelectrolyte multilayer architectures consisting of thick protonated and deuterated blocks can be used in order to distinguish different zones of the thin film growth which can be described as precursor and core zones. Thus, almost no bound water is found in precursor layers at 0\% relative humidity, which suggests that water is mobile and the precursor layer is not in the glassy state like in the central zone of the PEM. Swelling behaviour of the PEMs (reversibility of the swelling) can be understood in terms of equilibrium reactions. Explored influence of temperature and type of salt used during preparation contributes to a better understanding of the formation of PEMs. The dependence of the film thickness on preparation temperature, concentration and the type of salt can be described by the hydrophobic nature of the effect. Experimental observations demonstrate that it is possible to decrease both the range and the amplitude of the electrostatic force by using an ion concentration of at least 0.1 mol/L in the solution. The role of secondary interactions such as hydrophobic attraction of the chains that can overcome electrostatic repulsion and become the major contributing factor for the layer formation and resulting structures is emphasized.}, language = {en} }