@phdthesis{Muschter2017, author = {Stefan Muschter}, title = {Characterization of pathologic neutrophil responses and indentification of signaling pathways in HNA-3a antibody-mediated transfusion-related acute lung injury}, journal = {Charakterisierung von pathologischen Neutrophilenantworten und Identifikation von Signalwegen in der HNA-3a Antik{\"o}rper-vermittelten transfusionsassoziierten akuten Lungeninsuffizienz.}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002883-4}, year = {2017}, abstract = {Transfusion-related acute lung injury (TRALI) is an adverse transfusion reaction and the major cause of transfusion-related mortality. The syndrome occurs within six hours after transfusion and is characterized by acute respiratory distress and the occurrence of a non-cardiogenic, bilateral lung edema. TRALI is almost entirely induced by leukocyte-reactive substances which are present in the blood product and get transferred to the recipient during transfusion. The majority of cases (~80\%) is caused by leukocyte-reactive immunoglobulins and is accordingly classified as immune-mediated TRALI. The responsible antibodies are generated via alloimmunization and are directed against human leukocyte antigens of class I and II or human neutrophil alloantigens (HNA). Within the HNA class, HNA-3a antibodies have an exceptional clinical relevance as they are most frequently involved in severe and fatal TRALI cases. The high mortality was associated with their characteristic ability to induce a strong neutrophil aggregation response. The described clinical relevance of HNA-3a antibody-mediated TRALI motivates the screening for new strategies for preventive or acute pharmacologic intervention. Knowledge of the molecular pathomechanisms is a crucial prerequisite and thus, respective investigations are required. In order to achieve this goal, HNA-3a antibody-induced cytotoxicity and aggregation were assessed on the molecular level by usage of flow cytometry, the granulocyte agglutination test and by phosphoproteome analysis. The current study provides insight into molecular processes during HNA-3a antibody-induced neutrophil responses and is the first to assess neutrophils using global, gel-free phosphoproteome analyses. Accordingly, it is the first to provide neutrophil phosphoproteome data in the context of TRALI. Gel-free phosphoproteome analyses of primary neutrophils required the highly selective and sensitive phosphopeptide enrichment from stable and sufficiently large protein extracts. However, an appropriate workflow did not exist and was hence developed by sequential protocol optimization steps. The developed workflow was finally proven suitable for comparative gel-free phosphoproteomics when detecting the formyl-methionyl-leucyl-phenylalanine-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in a proof-of-principle experiment. The following single parameter analyses were conducted to investigate neutrophils for their responses to HNA-3a antibodies in absence and presence of proinflammatory priming conditions. Results revealed that the direct stimulation of neutrophils with HNA-3a antibodies will likely not cause the induction of cytotoxic effector functions. In contrast, neutrophils react predominantly by aggregation, a process which is potentially mediated by integrins and causes a secondary, subthreshold activation of solely ERK2. Accordingly, only the neutrophil aggregation response could also be enhanced by an appropriate priming. Taken together, the single parameter analyses proved neutrophil aggregation as the main pathomechanism in HNA-3a antibody-mediated TRALI and thus, the underlying signaling pathways were investigated by global, gel-free phosphoproteomics. The following phosphoproteome analyses indicated the induction of a biphasic signaling during 30 minutes of HNA-3a antibody treatment and signaling pathways of Rho family GTPases could be associated with the first and the second phase. Additionally, the involvement of ERK signaling was indicated in the second phase and this result corroborated thus the data of the previous single parameter analyses. The comprehensive analysis of the identified signaling pathways revealed Rho, Rac and Cdc42 as central regulators and the specific inhibition of Rho in the following validating experiments led very intriguingly to a significant enhancement of HNA-3a antibody-mediated neutrophil aggregation. Hence, this result indicated a potential inhibitory effect of HNA-3a antibodies on Rho activity. Therefore, Rho inhibition was suggested to occur in parallel to an adhesion-inducing signaling pathway and might hence be involved in the stabilization of neutrophil aggregates in HNA-3a antibody-induced TRALI. The results from this doctoral thesis contributed to the generation of a new pathogenesis model for HNA-3a antibody-mediated TRALI. In this model, neutrophils respond to direct HNA-3a antibody exposure predominantly by homotypic aggregation. These potentially very stable and primed aggregates accumulate in the lung and are susceptible to parallel, proinflammatory stimulation. Subsequently, this cascade leads to full neutrophil activation and finally to TRALI induction.}, language = {en} }