@phdthesis{Richter2017, author = {Erik Richter}, title = {Phosphoproteomic characterization of Staphylococcus aureus-induced host signaling}, journal = {Charakterisierung der Staphylococcus-induzierten Wirtantwort mittels Phosphoproteomik}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002861-7}, year = {2017}, abstract = {Bacterial infections represent an increasing threat in human health and hospital- acquired infections meanwhile account for 99,000 deaths every year in the United States (Ventola, 2015). Live-threating bacterial infections will certainly emerge to an even more serious concern in future, essentially by accelerated development of antibiotic resistance. Only recently, the discovery of plasmid-encoded mcr-1, that confers resistance against colistin, marks the point where this highly transmissible resistance mechanism is now reported for every so far developed antibiotic (Liu et al., 2016). Staphylococcus aureus is a Gram-positive bacterium and well-known for its ability to quickly acquire resistance toward antibiotics either by chromosomal mutations and/or horizontal gene transfer (Pantosti et al., 2007). Although approximately 30\% of the population is colonized with S. aureus (Kluytmans et al., 1997), it can transform to an invasive pathogen that causes a wide range of severe infections including pneumonia. The success of S. aureus as opportunistic pathogen can be attributed to combinations of several beneficial properties and capabilities including the expression of an arsenal of virulence factors (Archer, 1998), intracellular persistence (Garzoni \& Kelley, 2009) and subversion of host cell defense mechanisms (Schnaith et al., 2007). The airway epithelium is the first line of defense against bacterial pathogens by forming a relative impermeable physical barrier composed of epithelial cells that are linked by tight junctions, desmosomes and adherence junctions (Davies \& Garrod, 1997). Additionally, the airway epithelium mediates the detection of bacterial pathogens via toll-like receptors (TLRs) that recognize a variety of bacterial molecular patterns such as lipopolysaccharide (LPS), peptidoglycan and flaggelin (Sha et al., 2012). This interaction is transduced via protein phosphorylations into the cell in order to promote adaptation to the infection by initiation of the adaptive and innate immune defense. Although few insights where obtained of the signaling host responses towards staphylococcal infections (Agerer et al., 2003; 2005; Ellington et al., 2001), a comprehensive description of the host signaling network is largely missing. Thus, this dissertation thesis focuses on the decipherment of phosphorylation-mediated signaling responses towards S. aureus infections in non- professional and professional phagocytes by mass spectrometry-based phosphoproteomic techniques. The results of this thesis are summarized in the four chapters. Chapter I introduces to recent advances in the development of methodologies applied in the field of phosphoproteomics, including quantification strategies, peptide fractionation techniques and phosphopeptide enrichment methods applied for the system-wide characterization of protein phosphorylations by mass spectrometry. Additionally, publications reporting phosphorylation-based host signaling responses towards bacterial pathogens or their molecular patterns that applied mass spectrometry-based phosphoproteomics are discussed. In chapter II, the responses of the human bronchial epithelial cell lines 16HBE14o- and S9 following challenge with staphylococcal alpha- toxin at the level of proteome and phosphoproteome are summarized. General and cell type-specific signaling events are highlighted and evidences linking the activity of the epidermal growth factor receptor (EGFR) with differences in tolerance toward alpha-toxin are provided. Chapter III describes the modulation of the host signaling network of 16HBE14o- airway epithelial cells triggered by infection with S. aureus including temporal dissection of signaling events. Several protein kinases were identified as important signaling hubs mediating the host response. Targeted pharmaceutical inhibition of these kinases was probed and resulted in reduction of intracellular bacterial load. Chapter IV describes the rearrangement of the kinome by the differentiation of THP-1 monocytes to macrophage-like cells by application of quantitative kinomics. This approach identified the kinase MAP3K7 (TAK1) as key mediator of bacterial clearance, chemokine secretion and the differentiation process itself.}, language = {en} }