@phdthesis{Draeger2017, author = {Carolin Dr{\"a}ger}, title = {Safety and efficacy of a novel live marker vaccine against Classical swine fever virus}, journal = {Studien zur Sicherheit und Effizienz einer neuen Lebendmarker-Vakzine gegen das Virus der klassischen Schweinepest}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002701-7}, year = {2017}, abstract = {The presented study was dedicated to outstanding issues in regard to the safety and efficacy of the LAV “CP7\_E2alf”, during the final licensing process and towards its putative implementation in outbreak scenarios as emergency vaccine. (I) For application of a genetically engineered virus under field conditions, knowledge about its genetic stability is mandatory. Therefore, the genetic stability of “CP7\_E2alf” needed to be assessed in vivo and in vitro. Mutation rates were compared to the parental pestivirus strains (BVDV-1 “CP7” and CSFV “Alfort/187”), and BVDV or CSFV field-strains. There was no indication that “CP7\_E2alf” could be more prone to mutational events than its parental viruses or representative field-strains. Moreover, no recombination events were observed in in vitro experiments. In conclusion, the data obtained in this study confirm a strong genetic stability of “CP7\_E2alf” as an important safety component. (II) Since vaccination of breeding animals is often discussed, this study was conducted to assess the safety of “CP7\_E2alf” vaccination of breeding male pigs. The study with “CP7\_E2alf” vaccinated boar demonstrated that the new CSFV marker vaccine is suitable for application in reproductive boar. Neither in organs of the uro-genital tract related to sperm production nor in urine or feces, vaccine virus genome was detectable. Dissemination of “CP7\_E2alf” through semen, and shedding with urine and feces, is therefore highly unlikely. (III) In order to investigate the influence of pre-existing pestivirus antibodies of the efficacy of “CP7\_E2alf”, a vaccination-challenge-trial was conducted with “CP7\_E2alf” (Suvaxyn® CSF Marker) and the “gold-standard” of live-modified CSFV vaccines, the C-strain (RIEMSER® Schweinepestvakzine). Pre-existing antibodies against BVDV-1 were provoked through intramuscular inoculation of a recent field isolate from Germany. Seven days after the vaccination, all animals were challenged with highly virulent CSFV strain “Koslov”. It was demonstrated that pre-existing anti- BVDV-1 antibodies do not impact the efficacy of both live attenuated vaccines against CSFV. Both C-strain “Riems” and marker vaccine “CP7\_E2alf” were able to confer full protection against the highly virulent challenge. However, slight interference was seen with serological DIVA diagnostics accompanying “CP7\_E2alf”. Amended sample preparation and combination of test systems was able to resolve most cases of false positive reactions. However, in such a coinfection scenario, optimization and embedding in a well-defined surveillance strategy is clearly needed for marker vaccination scenarios. (IV) To supplement the data about the kinetic of maternally derived antibodies in piglets from sows vaccinated during outbreaks, a single “emergency-type” vaccination of two pregnant sows was done. Focus was laid on the kinetics of maternally derived antibodies (MDA) in the screening assays of their offspring with screening assays that would be used in case of CSFV outbreaks, i.e. CSFV E2 and Erns antibody ELISA. Upon vaccination with “CP7\_E2alf” 21 days before farrowing, MDAs were measurable in all piglets born to vaccinated sows. The E2- ELISA reactivities showed an almost linear decrease over ten weeks after which all piglets were tested negative in the ELISA. Future studies should investigate, if MDA are able to protect offspring of vaccinated sows or whether the piglets should also be vaccinated.}, language = {en} }