@phdthesis{Kabisch2013, author = {Antje Kabisch}, title = {Marine environmental proteomics - from simple to complex microbial assemblages}, journal = {Marine Umweltproteomics - von einfachen bis zu komplexen mikrobiellen Gemeinschaften}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001633-0}, year = {2013}, abstract = {Rich knowledge about global nutrient cycles and functional interactions can be gained from the perspective of complex microbial proteomes. In this thesis, the application of environmental proteomics allowed for a direct in situ analysis of habitat-specific proteomes expressed by respective microbial communities from two different marine ecosystems. In the first part of this thesis, unculturable symbiont populations from tubeworms that colonize hydrothermal vents of the Pacific deep sea became accessible by use of community proteomics. This branch of environmental proteomics is generally employed to ascertain simple microbial assemblages derived from in situ samples. The proteome study was aimed at analyzing adaptations of seemingly monospecific symbionts to different hosts, the tubeworms Tevnia jerichonana und Riftia pachyptila. A comparison of the newly sequenced genomes of symbiont populations from both hosts confirmed that both symbioses involve the same bacterial species. Also the proteome analysis by 2D-PAGE showed a high physiological homogeneity for symbionts from both worm species, although the hosts are exposed to different geochemical conditions. Thus, the hosts provide their symbionts with a relatively stable internal environment by attenuation of external influences. Only minor variations in the symbionts proteomes reflected the differential environmental conditions outside the worms. Hence, the symbionts were able to fine-tune major metabolic pathways and oxidative stress in response to only minor chemical changes within their hosts. Moreover, new components of important physiological processes of the bacterial symbionts, like the sulfide oxidation and carbon fixation, were identified by in-depth proteomics of the Riftia symbiosis model system. The in situ protein samples showed as well that, in contrast to an earlier hypothesis, nitrate is used as an alternative electron acceptor. In the second part of this thesis, another branch of environmental proteomics called metaproteomics was applied to investigate the response of a bacterioplankton community to a spring phytoplankton bloom in the North Sea. Recurrent plankton blooms are a common phenomen of coastal areas, which however has only been investigated with limited resolution in biodiversity. Based on large-scale proteomic data sets it was found that specialized populations of Bacteroidetes, Gammaproteobacteria and Alphaproteobacteria exhibited differential protein expression patterns. These involved oligomer transporters, glycoside hydrolases and phosphate acquisition proteins. A successive utilization of algal organic matter by microbes indicated a series of ecological niches occupied by the heterotrophic picoplankton. Key proteins, identified by metaproteomics, were further investigated by studying a model bacterium to define their specificities regarding the utilization of algal glycans. By isotope labeling of proteins, quantitative proteomics of the North Sea isolate Gramella forsetii KT0803, a Bacteroidetes representative could be conducted. The adaptation to the algal polysaccharides alginate and laminarin in comparison with glucose was analyzed. G. forsetii proved to be a specialist for the chosen algal polymers, in particular for glucans like laminarin. Primarily comprehensive clusters, the so-called polysaccharide utilization loci (PULs) were activated. The results of this model study complemented the basic concepts obtained by the metaproteomic approach about carbon cycling in coastal systems. The accessibility of numerous unculturable marine microbes by environmental proteomics allows to improve our understanding of interactions that drive symbioses or complex communities. Adaptations to environmental parameters, such as the abundance of substrates, can be analyzed and associated with respective populations. Thus statements can be made for functional groups of microorganisms, their ability for the creation of niches and their flexibility to respond to varying environmental impacts. The increasing number of marine model bacteria enables targeted analysis of specificities and adaptations and hence to support the environmental proteomics approach.}, language = {en} }