@phdthesis{Le2014, author = {Huu Cuong Le}, title = {Gene cloning and characterization of enzymes from marine extremophiles}, journal = {Gen-Klonierung und Charakterisierung der Enzyme von Marine-Extremophilen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001697-5}, year = {2014}, abstract = {The investigated bacterial strain 64G3 was isolated from an offshore oil reservoir in Vung Tau, Vietnam. By means of 16S rDNA sequence alignment and DNA-DNA hybridization with Petrotoga mexicana DSM 14811, the isolate was identified as Petrotoga mexicana species. Morphologically, the 64G3 cells were rod-shaped and cell sizes varied widely from 1.0 µm up to 60 µm in length and from 0.6 to 1.2 µm in width. The cells appeared single, pairwise or in chains within a sheath-like structure (a typical characteristic of the order Thermotogales) that ballooned over the cell ends. Cells were immobile and no flagella were observed. Strain 64G3 grew anaerobically at temperatures ranging from 30 to 65°C and within the pH range of 5.0 to 8.5 with optimum growth at 55°C and the pH 7.0. Elemental sulfur and thiosulfate served as alternative electron acceptors whereas sulfate did not. Cellular extract of strain 64G3 grown in a basal medium containing soluble starch displayed hydrolytic activity towards soluble starch. The amylase system includes at least two individual enzymes. Amylase activity of the cell extract was detected in a wide temperature range (30-80°C), with optimal enzyme activity at 75°C. By using degenerate primer for PCR amplification of GH13 enzyme coding regions in combination with other molecular methods, a full amylase coding gene containing four conserved regions of α-amylase was obtained. The deduced sequence showed low identities (up to 40\%) to other known amylases. This 1992 bp coding gene was heterologously expressed in E. coli and its product (amylase) was characterized. Under common expression conditions, the 77 kDa amylase (rAmyA) was predominantly produced as inclusion bodies (insoluble protein). The minor amount of soluble active amylase was used for purification and characterization of the enzyme. rAmyA was active on starch at temperatures between 30-55°C, with an optimum at 45oC. It is not thermostable because it was completely inactive after incubation at 65°C for 15 min. The enzyme was active over a pH range from 4.5-8.0, with an optimum at pH 6.5. Beside starch, rAmyA also hydrolysed glycogen, amylose, amylopectin and other oligosaccharides. Pullulan and cyclodextrins were not the substrates for this amylase. The enzyme hydrolyzed starch in an endo-acting manner, releasing maltose and maltotriose as major products and a lesser amount of glucose. On the basis of the primary structure, the substrate specificities and the hydrolysis pattern, rAmyA was classified as an endo-acting α-amylase (EC. 3.2.1.1). The cpn10/60 operon from psychrophilic O. antarctica was cloned and expressed in B. subtilis using a multi-copy plasmid. The amounts of soluble 60 kDa Cpn60 and 10 kDa Cpn10 produced at temperature ranging from 10 - 30°C were high and stable during cell growth. To investigate the impact of psychrophilic chaperonin on cold adaptation, cells with (cpn+) and without (cpn-) cpn10/60 operon were grown at 10 and 15°C. Growth comparison between two strains revealed that psychrophilic chaperonin did not support cold adaptation of B. subtilis at 10 and 15°C as it did in E. coli. A single copy of O. antarctica cpn10/60 operon was integrated into the amyE locus of the B. subtilis chromosome. The yeast α-glucosidase, a theoretic protein substrate for this chaperonin, was heterologously produced in B. subtilis at temperatures ranging from 15-30°C. Within this temperature range, the major amount of this protein appeared as inclusion bodies. Co-expression of O. antarctica cpn10/60 operon at 15°C, however, did not result in a higher activity of glucosidase. Moreover, SDS-PAGE analysis of cellular insoluble fractions revealed that the amount of insoluble enzyme produced in cpn+ cells did not decrease in comparison with that produced in cpn- cells, indicating that the recombinant chaperonin had no impact on recovery of active α-glucosidase from the inclusion bodies.}, language = {en} }