@phdthesis{Hadrath2007, author = {Stefan Hadrath}, title = {On electrode erosion in fluorescent lamps during instant start}, journal = {Kaltstartuntersuchungen in Leuchtstofflampen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-000337-1}, year = {2007}, abstract = {A fluorescent lamp driven with an 'instant start electronic control gear' starts in a glow mode. In the glow mode, which lasts typically for tens of milliseconds, the cathode fall exceeds hundreds of volts. This causes high energy ion bombardment of the electrode which heats the electrode, and induces a transition from glow to arc mode. In the arc mode the electrode emits thermionically and the cathode fall drops to the 12 – 15 V range. Unfortunately, the high energy ion bombardment during the glow mode leads also to intense sputtering of electrode material, including tungsten as well as emitter. Thus, instant started fluorescent lamps often suffer from early failures due to coil fracture. Therefore, the investigation of tungsten erosion during instant start is necessary and was the main goal of this work. The density of neutral atomic tungsten is determined by laser-induced fluorescence (LIF) and optical emission spectroscopy measurements (OES). Investigations are performed on a low-pressure argon dc discharge and on commercial fluorescent lamps. To include the entire temperature profile along the electrode the diffuse and spot operation modes of the dc lamp are studied experimentally and theoretically. The measured dependencies of the cathode temperature along the coil on the discharge and heating parameters are compared with the calculated results. For the first time the tungsten erosion during instant start of commercial fluorescent lamps was experimentally investigated in this work. The erosion process could be related to sputtering. A reconstruction of the temporal evolution of the absolute tungsten population density of the ground state during the glow mode was presented. The sputtered tungsten density increases immediately with the ignition, reaches a maximum where the discharge contracts at the end of the glow mode, and decreases some milliseconds before the glow-to-arc transition takes place. The maximum tungsten density was observed within a region of a few hundred micrometers only located at the discharge attachment point. The main result achieved in this work is that during the whole glow mode tungsten is sputtered. Therefore, the lifetime of instant started fluorescent lamps can be enhanced by reducing the duration of the glow mode. Additionally, the need for the application of different types of diagnostics for the observation of lamp ignition was shown due to different results of LIF, AAS and OES: The observation of excited tungsten atoms by OES shows the maximum emission signal at the glow-to-arc transition whereas by LIF and AAS measurements of tungsten atoms in the ground state the maximum density is found during the whole glow mode. This can be explained by the fact that the intensity of the spontaneous emitted light is related not only to the density but also to the degree of excitation.}, language = {en} }