@phdthesis{Hofstetter2020, author = {Robert Klaus Hofstetter}, title = {Interfaces of Supercritical Fluid Chromatography with Mass Spectrometry and Supercritical Fluid Extraction - Applications in Medicinal Chemistry and Bioanalysis}, journal = {Schnittstellen zwischen {\"u}berkritischer Fluidchromatographie, Massenspektrometrie und {\"u}berkritischer Fluidextraktion - Medizinisch/chemische und bioanalytische Anwendungen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-40389}, pages = {161}, year = {2020}, abstract = {Research on the science and the fiction of supercritical fluid chromatography (SFC) has been ongoing for more than five decades. Today, packed column SFC promises speedy solutions to chiral and semi-preparative separation problems, but academia has been reluctant to incorporate SFC into its curriculum, as doubts linger concerning its practicability. This work sought to explore the merits of SFC in hyphenation with electrospray ionization--single quadrupole mass spectrometry (ESI-MS) and supercritical fluid extraction (SFE) in various aspects of medicinal chemistry and bioanalysis within an academic setting. SFC was investigated for its usefulness in assessing the purity and the stability of synthesis products, and the quantification of chiral and achiral metabolites - domains conventionally occupied by high performance liquid chromatography (HPLC). Confronted with analytes prone to hydrolysis (cyclic polysulfides) and UV-induced configurational changes (aza-stilbenes), fast elution by water-free SFC-MS proved complementary to traditional chromatographic techniques. The quantification of antidepressant ketamine metabolites presented an opportunity to assess supercritical fluid techniques within a bioanalytical context. While SFC hyphenated to single quadrupole MS did not reach the sensitivity levels of HPLC coupled to triple quadrupole MS/MS, exploitation of supercritical CO2 reduced analysis times more than six-fold (60 minutes by HPLC vs 10 minutes by SFC). When coopted for both extraction and analysis, SFE-SFC-MS simplified sample preparation and promoted the transition from off- to on-line bioanalysis. Similar results were obtained when SFC was applied to acidic and basic metabolites of the controversial anodyne flupirtine. Again, SFC featured shorter run times but also expanded the target metabolite spectrum covered within one run. Finally, a tiered approach to validation demonstrated the reliability achievable by SFC. Critical applications such as quantification of the newly approved antidepressant ketamine or the recently withdrawn analgesic flupirtine were comprehensively validated according to guidelines on bioanalytical method validation by the European Medicines Agency. Notably, this included the first fully validated chromatographic methods for the putative antidepressant (2R,6R)-6-hydroxynorketamine, and the first report of EMA-conforming quantification by on-line SFE-SFC-MS from urine. Separation scientists find themselves confronted with diverse problems and tools. Although parsing only a microscopic subsection of the available chemical and analytical space, the results obtained here suggest SFC to be a fast and versatile addition to conventional chromatographic methods employed at the intersection of medicinal chemistry and bioanalysis.}, language = {en} }