@phdthesis{Verhaegen2018, author = {Gerlien Verhaegen}, title = {Complex relationships between shell morphology and habitat in the polymorphic aquatic gastropod Potamopyrgus antipodarum (Caenogastropoda, Tateidae)}, journal = {Komplexe Beziehungen zwischen Schalenmorphologie und Lebensraum der polymorphen Wasserschnecke Potamopyrgus antipodarum (Caenogastropoda, Tateidae)}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-22523}, pages = {131}, year = {2018}, abstract = {There is an increasingly urgent need to understand and predict how organisms will cope with the environmental consequences of global climate change. Adaptation in any form can be mediated by genetic adaptation and/or by phenotypic plasticity. Disentangling these two adaptive processes is critical in understanding and predicting adaptive responses to environmental change. Usually, disentangling genetic adaptation from phenotypic plasticity requires common garden experiments conducted under controlled laboratory conditions. While these experiments are powerful, it is often difficult to translate the results into natural populations and extrapolate to naturally occurring phenotypic variation. One solution to this problem is provided by the many examples of invasive species that exhibit wide phenotypic variation and that reproduce asexually. Besides selecting the appropriate in situ model, one must carefully choose a relevant trait to investigate. Ecomorphology has been a central theme in evolutionary biology because it reflects how organisms can adapt to their environment through their morphology. Intraspecific ecomorphological studies are especially well suited to identify adaptive pressures and provide insights into the microevolutionary mechanisms leading to the phenotypic differentiation. One excellent candidate for an intraspecific ecomorphological study aiming to understand adaptation through genetic adaptation and phenotypic plasticity is the invasive New Zealand mudsnail Potamopyrgus antipodarum Gray (1853). This ovoviviparous snail features high variability in shell morphology and has successfully invaded a wide range of fresh- and brackish water habitats around the world. The evolutionary and ecological situations in this species’ native and invasive ranges is drastically different. In New Zealand, P. antipodarum’s native range, sexual and asexual individuals coexist and experience selective pressure by sterilizing endoparasites. By contrast, only a few asexual lineages have been established in invaded regions around the globe, where parasite infection is extremely rare. Here, we took advantage of the low genetic diversity among asexually reproducing European individuals in an attempt to characterize the relative contribution of genetic variation and phenotypic plasticity to the wide variation in shell morphology of this snail. Analysing the ecomorphology of 425 European P. antipodarum in a geometric-morphometric framework, using brood size as proxy for fecundity, and mtDNA and nuclear SNPs to account for relatedness and identify reproductive mode, we hypothesized that 1) shell variation in the invasive range should be adaptive with respect to colonization of novel habitats, and 2) at least some of the variation might be caused by phenotypic plasticity. We then expanded our ecomorphological scope by analysing 996 native specimens, expecting 1) genetic and morphological diversity to be higher in the native range compared to invaded regions; 2) morphological diversity to be higher in sexual compared to asexual individuals according to the frozen niche hypothesis; and 3) shell morphology to be habitat specific, hence adaptative. In a last part, we used computational fluid dynamics simulations to calculate relative drag and lift forces of three shell morphologies (globular, intermediate, and slender). Here, we tested the overall hypothesis that shell morphology in gastropods is an adaptation against dislodgement through lift rather than drag forces, which would explain the counterintuitive presence of wider shells with shorter spires in lotic environments. With a final flow tank experiment, we tested the specific hypothesis that the dislocation velocity of living snails is positively linked to foot size, and that the latter can be predicted by shell morphology, in particular the aperture area as assumed by several authors. As expected, we found genetic and morphological diversity to be higher in native than in invasive snails, but surprisingly no higher morphological diversity in sexual versus asexual individuals. The relationships between shell morphology, habitat, and fecundity were complex. Shape variation was primarily linked to genetic relatedness, but specific environmental factors including flow rate induced similar shell shapes. By contrast, shell size was largely explained by environmental factors. Fecundity was correlated with size, but showed trade-offs with shape in increasingly extreme conditions. With increasing flow and in smaller habitats such as springs, the trend of shell shape becoming wider was reversed, i.e. snails with slender shells were brooding more embryos. This increase in fitness was explained by our CFD simulations: in lotic habitats, slender shells experience less drag and lift forces compared to globular shells. We found no correlation between foot size and shell shape or aperture area showing that the assumed aperture/foot area correlation should be used with caution and cannot be generalized for all aquatic gastropod species. Finally, shell morphology and foot size were not related to dislodgement speed in our flow tank experiment. We concluded that the relationship of shell morphology and flow velocity is more complex than assumed. Hence, other traits must play a major role in decreasing dislodgement risk in stream gastropods, e.g. specific behaviours or pedal mucus stickiness. Although we did not find that globular shells are adaptations decreasing dislodgement risk, we cannot rule out that they are still flow related adaptations. For instance, globular shells are more crush-resistant and might therefore represent a flow adaptation in terms of diminishing damage caused by tumbling after dislodgement or against lotic specific crush-type predators. At this point, we can conclude that shell morphology in P. antipodarum varies at least in part as an adaptation to specific environmental factors. This study shows how essential it is to reveal how plastic, genetically as well as phenotypically, adaptive traits in species can be and to identify the causal factors and how these adaptations affect the fitness in order to better predict how organisms will cope with changing environmental conditions.}, language = {en} }