@phdthesis{Schroeter2014, author = {Rebecca Schroeter}, title = {Transcriptome analyses of industrially relevant bacteria}, journal = {Transkriptomanalysen industriell relevanter Bakterien}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001681-3}, year = {2014}, abstract = {In many industrial sectors biotechnological production processes have replaced pure chemical methods and allowed new, ecologically friendly and enzyme-based processes. Microorganisms, such as modified Bacillus strains are used in particular for the industrial enzyme synthesis. The two organisms Bacillus licheniformis and Bacillus pumilus are of great industrial importance. B. licheniformis is able to secrete proteins in large amounts, while B. pumilus shows high resistance to oxidative stress. During production processes different conditions can occur that affect the physiology of the production hosts and may result in a quantitative, but also a qualitative impairment of the products. This influence is based on e.g. chemical processes, the setting of temperature, pH, or oxygen availability and can lead to various stress situations for the bacteria. Cells respond to changes in their environment by sensing stressors and initiate a response to the stress, which is usually implemented by an induction or derepression of various regulons. In order to conduct an optimal production process, the metabolism and stress responses of the utilized bacteria should be known exactly. The aim of this study was to analyze of the stress response of B. licheniformis to heat and salt stress, and the stress response of B. licheniformis and B. pumilus to oxidative stress. These analyses were performed at the level of transcriptomics using cDNA microarrays, which is the most direct and global method for the analysis of changes in the physiology of a cell. The identification of stress specific markers genes and their differentiation from the SigB regulated general stress response has been another purpose of this work. Knowledge of these marker genes enables a prompt analysis of the fermentation conditions and thus a possible optimization of the process. The transcriptome analyses of this work show that B. licheniformis responds to heat stress by the induction of heat shock genes belonging to different regulons. These include the htpG gene, the HrcA regulon or the CtsR regulon, encoding chaperones and proteases, which mainly contribute to the protein quality control. The heat stress response of B. licheniformis revealed no fundamental differences to the heat stress response of the Gram-positive model organism Bacillus subtilis. The general stress response (SigB regulon), which is activated by heat stress, could be analyzed in more detail by the study of a ΔsigB mutant of B. licheniformis. Salt stress also provokes a strong induction of the general stress response in B. licheniformis. Genes for the transport and synthesis of compatible solutes were strongly induced, as well as several genes for transport systems with more or less known functions. The synthesis of the osmoprotective metabolites proline and glycine betaine could be verified in more detail by a metabolomics approach. The response to oxidative stress showed differences between both B. licheniformis and B. pumilus, and also to the oxidative stress response of B. subtilis. In B. licheniformis, the genes of the glyoxylate cycle are induced during oxidative stress. An activation of the glyoxylate bypass under oxidative conditions could be confirmed by a metabolome analysis of B. licheniformis. In addition, the PerR regulon of B. licheniformis is extended to include another two genes compared to B. subtilis. In contrast, several genes of the PerR regulon lack in the genome of B. pumilus, such as katA (vegetative catalase) or ahpCF (alkyl hydroperoxide reductase). However, other genes were induced in B. pumilus that were upregulated under oxidative stress conditions neither in B. subtilis nor in B. licheniformis. In addition, known regulons, regulated by e.g. Spx, CtsR or SOS were induced in both organisms. In summary, this dissertation transcriptionally analyzes the stress responses of B. licheniformis to heat, salt and oxidative stress, and in addition the oxidative stress response of B. pumilus. Several stress-specific regulons were identified in both, B. pumilus and B. licheniformis, which also correspond to the stress response of B. subtilis. However, it was possible to additionally assign genes to the stress specific responses of both organisms and to find differences, such as the absence of parts of the PerR regulon of B. pumilus, or the activation of the glyoxylate pathway in B. licheniformis during oxidative stress.}, language = {en} }