@phdthesis{GamezdeArmas2012, author = {Gustavo Adolfo Gamez de Armas}, title = {Molecular analysis of Streptococcus pneumoniae virulence factor genes and their prevalence among pneumococcal strains and clinical isolates in Germany}, journal = {Molekulare Analyse von Streptococcus pneumoniae Virulenzfaktorgenen und deren Verbreitung in Pneumokokkenst{\"a}mmen und klinischen Isolaten in Deutschland}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001182-6}, year = {2012}, abstract = {Streptococcus pneumoniae, more commonly known as the pneumococcus, is a Gram-positive bacterium colonizing the human upper respiratory tract as a commensal. However, these apparently harmless bacteria have also a high virulence potential and are known as the etiologic agent of respiratory and life-threatening invasive diseases. Dissemination of pneumococci from the nasopharynx into the lungs or bloodstream leads to community-acquired pneumonia, septicaemia and meningitis. Pneumococcal diseases are treated with antibiotics and prevented with polysaccharide-based vaccines. However, due to the increase of antibiotic resistance and limitations of the current vaccines, the burden of diseases remains high. Interactions of pneumococci with soluble host proteins or cellular receptors are crucial for adherence, colonization, transmigration of host barriers and immune evasion. The pneumococcal surface-exposed proteins are the main players involved in this host-pathogen interaction. Therefore, combating pneumococcal transmission and infections has emphasized the need for a new generation of immunogenic and highly protective pneumococcal vaccines, based on surface-exposed adhesins virtually expressed by all pneumococcal strains and serotypes. The genomic analysis of S. pneumoniae strains helped to identify pneumococcal virulence factors such as pili, PsrP and PavB, which have been demonstrated to interact with human proteins playing an important role during the pathogenic process of pneumococci, and are currently considered as new potential vaccine candidates against S. pneumoniae. A subclass of pneumococcal strains produces pili that are encoded by the pathogenicity islet pilus islet-1 (rlrA islet) and/or the pilus islet-2. Both types of pili are implicated in bacterial adherence to host cells. A further pathogenicity islet encoded protein is PsrP. The presence of the psrP-secY2A2 islet correlated positively with the ability of pneumococci to cause invasive pneumococcal diseases. Recent studies indicated that PsrP is a protective adhesin interacting with keratin 10 on lung epithelial cells. In this study, the genomic loci of the pneumococcal virulence factors pili, PsrP and PavB were molecularly analyzed and used as molecular markers for molecular epidemiology studies of S. pneumoniae. The genotyping results obtained here showed the impact of the PCV7 immunization of children, started in July 2006, on the distribution of these pneumococcal virulence factors among clinical isolates in Germany. These findings gave more insights into the role of pili, PsrP and PavB in pneumococcal pathogenesis and may strongly support the idea of including these pneumococcal constituents in a broad coverage protein-based vaccine against pneumococcal infections produced by invasive serotypes in the future. The mature PavB protein contains a variable number of repetitive sequences referred to as the Streptococcal Surface Repeats (SSURE). PavB has been demonstrated to interact with fibronectin and plasminogen in a dose-dependent manner and it was identified as a surface-exposed adhesin with immunogenic properties, which contributes to pneumococcal colonization and respiratory airways infections. The complete molecular analysis performed here for PavB, allowed to know more accurately its structure and to estimate the real number of SSURE units in different pneumococcal strains. With these findings, a new primary sequence-based structural model was constructed for the PavB protein and its SSURE domain, and, at least for TIGR4, the complete pavB gene and PavB protein sequences with five SSURE units was reported in the GenBank database of the NCBI website. Due to its immediate neighborhood on the pneumococcal genome with the tcs08 genes, PavB is likely linked with this pneumococcal TCS. Here, a significant reduction of the PavB protein expression was observed in delta-tcs08-mutant strains, which may strongly suggest that the TCS08 does play a role in pneumococcal virulence and metabolisme, as further observed in growth behaviour experiments carried out with the TCS08-deficient mutants, cultured in chemically defined medium. Despite several studies suggest that the molecular mechanism underlying the bacterial signal transduction is very sophisticated, the majority of reports in prokaryotic TCS, including those for S. pneumoniae, are still focused in single cognate pairs. The pneumococcal genome encodes 14 TCSs and an orphan response regulator. It is obvious that TCS pathways are often arranged into complex circuits with extensive cross-regulation at a variety of levels, thereby endowing cells with the ability to perform sophisticated information processing tasks. This study established also the experimental and molecular bases for the construction of a comprehensive genome-wide interaction map of the complex TCS pathways for its application in the gene regulation of pneumococcal virulence factors.}, language = {en} }