@phdthesis{Dill2017, author = {Veronika Dill}, title = {Towards a more efficient control of foot-and-mouth disease outbreaks}, journal = {Etablierung einer effizienteren Kontrolle von Maul- und Klauenseuche-Ausbr{\"u}chen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-21327}, pages = {96}, year = {2017}, abstract = {Foot-and-mouth disease virus (FMDV) is a positive-sense RNA virus of the family Picornaviridae that comprises of seven serotypes and is distinguished by a high contagiosity with the ability of rapid spread. Strategies for abatement and control are based on an early detection, quick initiation of retaliatory actions and mass vaccinations. Therefore, aim of the study was the development of a fast and easy method for genome sequencing as well as an investigation into the causes, why some cell lines that are mainly used for vaccine production, are resistant towards FMDV infection. Finally, adaptive sequence changes in different cell culture systems and associated effects on particle stability and immunogenicity were examined. In case of an outbreak it is of major importance to detect and rapidly characterize the circulating virus isolate to choose an appropriate vaccine to minimize the viral spread. In addition, comprehensive genome analysis of the outbreak strain provides information about the origin of the virus and allows molecular epidemiology. A universal primer set, covering most parts of the open reading frame of the viral genome, was developed to perform quick sequence analyses, independently of the viral serotype (Paper I). Especially in endemic regions, vaccination of susceptible animal species is the main action to combat foot-and-mouth disease (FMD) in an acute outbreak situation as well as a preventive measure. Reasons, why some baby hamster kidney (BHK) cell lines are resistant towards an infection with FMDV, were examined in a second study that narrowed down the cause for this phenomenon to an impaired attachment of the virus to the cell surface. Furthermore, an alternative approach could be developed to successfully adapt the virus to the resistant vaccine-production cell line by using a FMDV-sensitive “wet-nurse” cell line (Paper II). Adaptive changes in the capsid-coding region of the viral genome caused through cultivation and passaging of the virus in different BHK cell systems were the topics of the third study. It was shown that capsid alterations are rather serotype-specific and dependent on the cell line used than influenced by the cell media. Viral titers and neutralization profiles of the adapted isolates were not affected compared to the original viruses (Paper III). Overall, this work expanded our knowledge on the control and eradication of FMD and will support the global effort to combat the disease.}, language = {en} }