@phdthesis{Ohler2014, author = {Bastian Ohler}, title = {Simulations on the TiO2 passivation layer and its effect on biomolecule adsorption}, journal = {Simulationen der TiO2-Passivierungs-Schicht und deren Effekt auf Biomolek{\"u}l-Adsorption}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001677-5}, year = {2014}, abstract = {The aim of this work is to further analyze the nature of the TiO2 passivation layer regarding structure, hydrophilicity and adsorption behavior, starting with the question how far metal and oxide properties are affected by the contact, regarding structural relaxation, atomic charges and work function. This determines how far the influence of metal has to be considered in simulations of TiO2 passivation layers. Mimicking the initial phases of implant contact with the biological environment, the adsorption of the inorganic ions on titanium oxides is to be investigated next, especially the influence of Ca2+ and HnPO4n-3 on the surface properties. Finally, biomolecule adsorption on TiO2 surfaces is investigated for understanding and improving their bioactivity. Titanium and Titanium Dioxide The properties of sharp interfaces formed between metallic titanium and a titanium dioxide layer with rutile or anatase structure and four different surface terminations were investigated. In all cases the work of separation is higher than the sum of surface energies, indicating the formation of an energetically very favorable interface region that glues the two phases together. The interface energy is negative, which means that for Ti and TiO2 bulk phases, mixing is energetically favorable. The influence of the metal on the atomic and electronic structure of the oxide is limited to a few atomic layers. Depending on its modification, a passivation layer may give rise to up- (rutile) or downshift (anatase) of the work function of the underlying titanium metal. Calcium and Phosphate First principles molecular dynamics simulations in vacuum revealed stable bonds between Ca2+ and HnPO4n-3 ions and the investigated TiO2 surfaces. Ca2+ ions bind to 2–4 surface oxygen atoms, preferring peripheral positions as found on both rutile surfaces where adsorption energies reach 9 eV per ion. In solution the hydration energy drastically reduces these values. Phosphate adsorbs to the TiO2 surface, but the adsorption energy is much lower than that of Ca2+ ions. The approach of phosphate is highly orientation dependent and hampered by the terminal oxygen atoms. Both ab initio and force field simulations indicate enrichment of Ca2+ ions close to the surface, most of them directly bound to it, which results in a net positive charge. As the adsorption of phosphate takes longer and is strongly reinforced by adsorbed Ca2+ ions, it has become obvious that Ca2+ ions initiate the adsorption of calcium phosphate clusters to titania surfaces. However, the TiO2 surface does not necessarily act as a nucleation site for calcium phosphate crystallization, as adsorbed Ca2+ ions show reduced affinity towards phosphate compared to free ions in solution. Collagen and Mechanical Stress Coinciding force distance relations have been obtained for a variety of restraint force constants, expansion rates and environments. The resulting Young’s moduli are in the range of experimental values both at low and high strain ranges. For low strains the calculated Young’s modulus of about 2 GPa is comparable to experimental values between 3 and 5 GPa. For high strains it reaches 10 GPa. The Young’s moduli can be assigned to three different mechanisms of stretching, affecting the macroscopic linearity, the torsional angles and the bond lengths. Chondroitin Sulfate (CS) and Hyaluronic Acid (HA) A force field model for CS and HA could be established that reproduced experimental torsion angles and showed the same free energy surface (FES) as an ab initio model. Hydration affects the overall FES, but does not alter the position of the energetic minima. Stabilization of the conformation via bridging water molecules as suggested by other works is not necessary. Both glycosaminoglycans adsorb to a hydroxylated rutile (100) surfaces despite the negative net charge both on surface and adsorbate. The presence of Na + ions is enough to compensate for the negative surface charge and to allow for adsorption. Ca2+ ions form additional bridges between negative groups on the surface and in the adsorbate.}, language = {en} }