@phdthesis{Kohls2015, author = {Hannes Kohls}, title = {Biocatalytic Synthesis of Amino Alcohols}, journal = {Biokatalytische Synthese von Aminoalkoholen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002378-1}, year = {2015}, abstract = {This thesis investigates the biocatalytic synthesis of amines and amino alcohols. The applicability and economic feasibility of biocatalysis for chiral amine synthesis is reviewed and the findings were compared to established chemical processes using relevant process parameters (TON, TOF and STY). This review clearly showcases the potential of biocatalysis for the synthesis of chiral amines and provides a valuable guide for synthetic chemists who want to benefit from these new opportunities. Next, biocatalysis is applied for the synthesis of an amino alcohol with two stereocentres: A novel route for the synthesis of all four stereoisomers of 4-amino-1-phenylpentane-2-ol is presented. Enzymes were applied to install both stereocentres successively, which allowed the selective synthesis with high yields and optical purities. A small scale preparative asymmetric transamination yielded one amino alcohol stereoisomer selectively. The approach presented in this thesis provides a valuable option for the synthesis of this compound class as it is highly selective, step efficient and circumvents the need for protecting groups as well as transition-metal catalysis. The substrate scope of an (S)-selective amine transaminase (ATA) was altered in order to expand the applicability for amino alcohol synthesis. Protein engineering was conducted to enlarge the small binding pocket. Small scale preparative synthesis of the 1,2-amino alcohol (R)-phenylglycinol exemplifies the applicability of the evolved variants for the asymmetric synthesis of this compound. The designed variants expand the collection of ATAs that are suitable for the synthesis of amino alcohols with bulkier substituents. To deepen the understanding of ATAs further, a class III TA family wide analysis (which includes (S)-selective ATAs) is presented. After comparing the active site architectures and performing literature research amino acids were identified that correlate with the reaction- and substrate specificity of the enzymes within this family. This information is compiled in a sequence-function matrix, which allows the prediction of the main activity of biochemically uncharacterised enzymes from their sequence. These insights provide a better understanding of the activity determining residues in (S)-ATAs and class III TAs in general.}, language = {en} }