@phdthesis{Nguyen2008, author = {Thi Thu Hoai Nguyen}, title = {The human antibody response to experimental colonization with Staphylococcus aureus NCTC8325-4}, journal = {The human antibody response to experimental colonization with Staphylococcus aureus NCTC8325-4}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-000553-0}, year = {2008}, abstract = {The four main work packages and their most important results are briefly described as following. 1. Characterization of the extracellular proteome of S. aureus NCTC8325-4 Reference maps of the extracellular proteins of S. aureus NCTC8325-4 were produced at pH ranges 6-11 and 4-7. In total, 119 (pH 6-11) and 177 (pH 4-7) protein spots were identified, corresponding to 48 and 114 proteins, respectively. Among them were many well-known virulence factors such as alpha-hemolysin (Hla), beta-hemolysin Hlb, gamma-hemolysin subunits (HlgA-C), hyaluronate lyase (HysA) and staphylococcal superantigen-like protein 11 (Ssl11). We also detected various extracellular enzymes, which can cause tissue degradation and are involved in nutrient acquisition, for example, autolysin (Atl), glycerol ester hydrolase (Geh), lipase (Lip), thermonuclease (Nuc), several serine proteases SplA-F (SplA-F), V8 protease (SspA), cysteine protease (SspB), staphopain thiol proteinase (88195808, SspP). Many of these proteins probably also contribute to the virulence of S. aureus. 2. Optimization of a 2-D immunoblot (IB) method for the comprehensive investigation of IgG binding to S. aureus extracellular proteins (strain NCTC8325-4) The immune proteome of S. aureus NCTC8325-4 was revealed by probing 2-D blots of S. aureus extracellular proteins at the two pH ranges 6-11 and 4-7 with a pool of sera from 16 volunteers. IgG binding was detected with high sensitivity using a peroxidase-coupled secondary Ab in combination with an ECL-substrate. With application of the software package Delta2D, we could clearly define 66 immune reactive spots on the immunoblots (IBs) of pH range 6-11 and 38 spots on IBs of pH range 4-7. 72 of these 104 immune reactive spots could be identified by matching the IBs with the protein reference maps. These spots represented 36 identified proteins, many of which are known virulence factors, or they are involved in bacterial cell wall biosynthesis and degradation. Generally, the most abundant proteins were also highly immune reactive, but there was no strict correlation between protein abundance and immune reactivity. Some low abundance proteins, especially basic proteins, showed high immune reactivity on 2-D IBs, for example, Atl, 88195808 (SspP) and iron-regulated surface determinant protein A (IsdA). On the other hand, we observed proteins, which were present in large amounts but did not bind IgG such as peptidoglycan hydrolase (LytM) and a hypothetical protein 88193909 (SAOUHSC\_00094). 3. Determination of the anti-staphylococcal Ab profiles of S. aureus carriers and noncarriers Comparing the serum IgG binding patterns of sera from the 16 individual volunteers, we observed pronounced heterogeneity in total IgG binding, spot patterns and spot intensities. Five spots were stronger in carriers than in noncarriers (P< 0.05, Mann-Whitney U test). These spots represent IgG binding to SspA, SspB, IsaA, and two hypothetical proteins. A principal component analysis based on differential IgG binding to these spots showed that the carriers were more closely related to each other than the noncarriers, but that they could not be clearly separated from the noncarriers. 4. Does experimental colonization induce changes of the anti-staphylococcal Ab profiles? Finally, we tested whether symptom-free experimental colonization of the 16 volunteers with S. aureus NCTC8325-4 elicited an IgG response. When we compared sera obtained before colonization with those taken 4 weeks after the inoculation with the laboratory S. aureus strain, we did not observe major changes in the Ab patterns. We conclude that short- term colonization with a strain of low virulence does not suffice to induce an Ab production, which is comparable to that present already before the colonization. Thus, either long term high density colonization is required, or as we consider most likely, the adaptive immune response is primarily triggered by (minor) S. aureus infections. Taken together, in this work we have separated the soluble proteins from complex extracellular S. aureus protein extracts with good reproducibility, large coverage (pH 6-11 and 4-7) and high resolution. With application of an ECL substrate, our 2-D immunoblotting procedure resulted in the highly sensitive detection of IgG binding over a wide range of signal intensities. The most important finding with this technique was the pronounced variability of anti-staphylococcal Ab profiles in healthy adults. This could well explain differences in susceptibility to S. aureus infection and its complications. The Ab responses are presumably triggered by long-term colonization or, more likely, by minor infections with S. aureus, since experimental nasal colonization of healthy volunteers with a bacterial strain of low virulence did not induce impressive changes in the Ab profiles.}, language = {en} }