@phdthesis{Bekeschus2015, author = {Sander Bekeschus}, title = {Effects of Cold Physical Plasma on Human Leukocytes}, journal = {Wirkung und Wirkweise physikalischen Kaltplasmas auf Humane Leukozyten}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002264-5}, year = {2015}, abstract = {Non-healing wounds pose a major burden to patients and health care systems alike. These wounds are chronically stuck in the inflammatory phase of the healing process without transitioning to the proliferative phase. They are also characterized by the excessive presence of leukocytes which are assumed to provoke the persistent inflammation observed in pathological wound healing. Recent studies suggested a beneficial role of cold physical plasma in the treatment of chronic wounds. Hence, it was the central question, whether exposure to cold physical plasma would affect the viability and/or function of human leukocytes. Cold plasma displays various properties of which the generation of reactive molecules, such as reactive oxygen and nitrogen species (ROS/RNS), where found to be central in mediating redox changes in leukocytes. Oxidative stress was present especially in lymphocytes that readily underwent apoptosis after exposure to plasma. This was largely a direct consequence of plasma-generated hydrogen peroxide but not superoxide or RNS. Amount of apoptosis was comparable among several lymphocyte subpopulations, with the wound healing-relevant γδ T cells being least affected. Lymphocyte apoptosis was accompanied by mitochondrial membrane depolarization, caspase 3 activation, DNA fragmentation, and phosphatidylserine exposure. These results are in line with previous characterizations of the intrinsic apoptotic pathway in redox biology, and suggest that plasma-induced apoptosis was not mediated by alternative molecular mechanisms. An important immune response mechanism, the proliferation of lymphocytes, was not interrupted in plasma-treated but non-apoptotic cells. In wounds, a central role of leukocytes is to orchestrate the healing response via the release of small communication molecules called cytokines. Non-healing wounds are associated with elevated amounts of pro-inflammatory IL-1β, IL-6, and TNFα, and plasma-treatment of leukocytes strongly decreased their concentrations. At the same time, the expression of anti inflammatory cytokines (IL-10, TGFβ) was markedly increased. The pro inflammatory chemokine IL-8 was the only molecule to be significantly increased in supernatants of plasma-treated cells. IL-8 is the major chemo-attractant for neutrophil granulocytes. Neutrophils are frequently associated with non-healing wounds. These professional phagocytes are the first to migrate to the site of injury where they inactivate invading pathogens by various mechanisms. Importantly, highly relevant effector functions remained mostly unaffected by plasma treatment: the phagocytosis of bacteria, the oxidative burst, and the intracellular killing of microbes. Of note, plasma induced a strong induction of neutrophil extracellular traps (NETs). Decorated with antimicrobial proteins, NETs are web-like chromatin extrusions that entrap pathogens. These results have several implications for wound healing. Plasma-treated neutrophils were still capable of eradicating bacteria, which are frequently associated with non-healing wounds. In addition, plasma-induced NETs could aid in wound healing by providing an antibacterial scaffold to safeguard against further dissemination of microorganisms. Chronic wounds display a state of sustained inflammation and plasma induced apoptosis but not necrosis in lymphocytes. This was an important finding as necrosis, the involuntary cell death, is associated with the release of intracellular content, enhancing inflammation. By contrast, apoptosis dampens it as dead cells are cleared by macrophages inducing anti inflammatory responses. Further, the cytokine signature of plasma-treated leukocytes was largely non inflammatory, which could further decrease inflammation in wounds. Altogether, this work provided first insight with regard to effects and mechanisms of cold physical plasma treatment of wound-relevant leukocytes. Generally, these cells were affected by a plasma mediated modulation of their redox state. Future studies should include the possibility of redox modulation into their experimental approach to further elucidate the role of ROS/RNS in inflammation and possibly to improve existing wound healing therapies.}, language = {en} }