@phdthesis{Sundaramoorthy2017, author = {Nandakumar Sundaramoorthy}, title = {Exploring humoral responses during Staphylococcus aureus infection by immunoproteomics}, journal = {Erforschung der humoralen Reaktionen w{\"a}hrend der Staphylococcus aureus-Infektion durch Immunoproteomik}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002854-6}, year = {2017}, abstract = {Staphylococcus aureus (S. aureus) is the leading cause of serious diseases in human both from hospital and community associated infections. Some clinical manifestations of S. aureus infections are infective endocarditis (IE), osteoarticular infections, skin and soft tissue, pleuropulmonary, and device-related infections. In Germany, S. aureus is the second most common cause of hospital-acquired (HA) infections. About 16.7\% of these nosocomial infections are caused by HA-MRSA clinical isolates. It has been a huge threat for the clinicians/scientists to control the emergence of such infections caused by S. aureus. S. aureus exhibits increasing virulence and resistance to various antibiotics, complicating prevention and treatment of infections. Eventually, active and passive vaccines might be the alternative strategy to deal with S. aureus related diseases. An effective S. aureus vaccine would provide great potential security and many societal benefits. However, so far vaccine trials have failed often due to limited number of available antigen candidates (monovalent/single antigen) in the clinical trials. Efforts to develop not only S. aureus vaccine but also prognosis or diagnosis tools are challenging tasks. That was the motivation point for the current thesis to identify potential antigen candidates for the aid of vaccine development using immunoproteomics approaches. From the earlier studies, passive immunisation with CP5, CP8, PNAG, ClfA, SdrG, alpha-hemolysin and active immunisation with IsdB, SEB, ClfA, CP5, CP8 were examined during preclinical trials and found to be the best examples for potential vaccine candidates. The antibody responses against S. aureus infections are heterogenous, still it is possible to identify the antibody signatures to a number of corresponding S. aureus antigens, whose abundance and presence could correlate to the disease state and may predict treatment outcome. To support this hypothesis, goals were set to develop and validate serological assay by indirect detection using suspension array technology (SAT). During the study, an antigen library of 140 recombinant S. aureus antigens was generated. Further serological assay were developed and validated to monitor the insights of antibody mediated humoral responses during S. aureus infection from various episodes of S. aureus infection. As an outcome, potential immunogenic antigen candidates were identified which may be used as candidates in active/passive vaccination and to stratify the patient. In total, three studies were carried out using serum and plasma samples from S. aureus nasal colonised healthy individuals (carriers and non-carriers) and bacteraemia patients (control, complicated and uncomplicated sepsis). Bead-based assays were performed and subsequent statistical analyses were done to identify immunogenic antigens that might discriminate between the different clinical status and outcome. Screening of healthy individuals (study-1) have shown significantly higher IgG responses against 14 antigens in S. aureus nasal carriers compared to non-carriers. Furthermore, the clonal complex 30 group of healthy carriers has shown significantly higher IgG responses against toxic shock syndrome toxin-1 (Tsst1) in comparison to non-clonal complex 30 healthy carriers. Study-2 have shown extensively higher IgG responses against 67 antigens in control samples compared to sepsis patients. 50\% of the antigens eliciting different immune responses belonged to the extracellular components of S. aureus. The IgG responses against MSCRAMM proteins such as FnbA, FnbB, Efb-1 have been shown to be significantly higher in complicated sepsis. Study-3 have shown notably higher IgG responses against 8 antigens (Plc, SspB, IsaA, SEM, GlpQ, HlgC, SACOL0444, SACOL0985) at baseline in uncomplicated sepsis patients compared to patients subsequently developing complicated sepsis. In summary, the group of immunogenic antigens that have been identified in these studies using immunoproteomics approach could be a starting point for the development of S. aureus vaccines. Moreover, the suspension array technology approach facilitated the identification of new S. aureus antigen candidates in addition to earlier reports. The current results of this study support the hypothesis that it is possible to identify a serological response to potential S. aureus antigens that correlate to progression of S. aureus infections.}, language = {en} }