@phdthesis{Dremsek2013, author = {Paul Dremsek}, title = {Epidemiology of the Hepatitis E Virus in Reservoir Hosts}, journal = {Epidemiologie des Hepatitis E Virus in Reservoir-Wirten}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-001663-3}, year = {2013}, abstract = {Background: Hepatitis E virus (HEV) is the etiological agent of an acute self-limiting hepatitis in humans worldwide. The main route of infection is by ingestion of food or water contaminated with the virus. In Germany, several hundred human cases are reported each year, while preliminary studies suggest a high infestation rate of herds of domestic pig (Sus scrofa domesticus) and sounders of wild boar (Sus scrofa). Autochthonous cases are originating mainly from zoonotic transmission from domestic pig and wild boar, but other animals may also be involved. Recently, a novel strain of HEV (ratHEV) had been found in Norway rats (Rattus norvegicus) in Germany, that could contribute to human epidemiology. Therefore, the aim of this study was to assess the seroprevalence of both HEV and the novel ratHEV in human, domestic pig and rat. For each of the three mammal species, an indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) was established, that based on an Escherichia coli-expressed carboxy-terminal segment (GT3-Ctr, amino acid (aa) 326–608) of the capsid protein of the autochthonous genotype 3 (GT3), derived from a wild boar from Germany. In parallel, a segment from ratHEV homologous to GT3-Ctr was also expressed in E. coli (ratHEV-Ctr, aa315–599) and was used in the ELISA. Hence, the established tests detect antibodies directed against HEV GT3 when using GT3-Ctr as antigen and ratHEV when using ratHEV-Ctr. Results: The GT3-based in-house human IgG test was validated using a commercial assay and showed high specificity and sensitivity. The average human population (represented by a panel of blood donors from Berlin and Brandenburg) reached a seroprevalence of 12.3\% (37/301) with the in-house ELISA. A panel of forestry workers from Brandenburg had an even higher seroprevalence of 21.4\% (119/555). Furthermore, ratHEV-specific antibodies could be detected in several sera of forestry workers. The novel ratHEV-based rat IgG ELISA could not be compared to similar tests, however, parallel testing with GT3-Ctr and statistical inference allowed conclusion of a seroprevalence. Rats trapped from several sites in Germany had an overall seroprevalence of 24.5\% (36/147). The sera were reactive exclusively with ratHEV-Ctr. As with the in-house ELISA for human sera, the porcine IgG test was validated using a commercial assay, yielding high specificity and sensitivity. A panel of domestic pigs from ten federal states of Germany showed a seroprevalence of 42.7\% (383/898) when tested with the in-house ELISA. Reactivity with ratHEV was present, but seemed to be caused mostly by cross-reactivity to GT3-Ctr. Conclusion: The HEV seroprevalence observed for human sera of the average population of Germany is among the highest in Europe and has been confirmed recently by other authors. The high seroprevalence found in forestry workers suggests that they should be counted as a risk group for HEV infection. Populations of rats have been shown to be infested heavily with ratHEV, as rats from all trapping sites situated within cities had a high prevalence for ratHEV exclusively and no serum reacted exclusively with GT3-Ctr. Seroprevalence in domestic pigs was demonstrated to be distributed evenly across federal states and districts. However, a vast difference of infestation could be detected in different herds, suggesting either differences in husbandry conditions, or an external source of infection that acts locally only. The rare but exclusive reactivity of human sera with ratHEV as well as the high cross-reactivity of swine sera with ratHEV suggests that viral strains other than the ones already known may contribute to cases of hepatitis E.}, language = {en} }