@phdthesis{Depke2011, author = {Maren Depke}, title = {Genomewide Characterization of Host-Pathogen Interactions by Transcriptomic Approaches}, journal = {Transkriptomstudien zur genomweiten Charakterisierung von Wirt-Erreger-Wechselwirkungen}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-000917-9}, year = {2011}, abstract = {This thesis contains results from transcriptome studies on different aspects of host-pathogen interactions. First, liver gene expression profiles from a murine chronic stress model served to elucidate aspects of the influence of stress on metabolism and immune response state. Chronic stress in female BALB/c mice was shown to lead to a hypermetabolic syndrome including induction of gluconeogenesis, hypercholesteremia, and loss of essential amino acids, to the induction of the acute phase response, but also of immune suppressive pathways and to the repression of hepatic antigen presentation. Increased leukocyte trafficking, increased oxidative stress together with counter-regulatory gene expression changes, and an induction of apoptosis were detected. The influence of intra-venous infection on the host kidney gene expression was analyzed in another murine model using the wild type strain Staphylococcus aureus RN1HG and its isogenic sigB mutant. Gene expression profiling indicated a highly reproducible host kidney response to infection. The comparison of infected with non-infected samples revealed a strong inflammatory reaction of kidney tissue, e. g. Toll-like receptor signaling, complement system, antigen presentation, interferon and IL-6 signaling. However, the results of this study did not provide any hints for differences in the pathomechanism of the S. aureus strains RN1HG and \ΔsigB, since the host response did not differ between infections with the two strains analyzed. Effects of SigB might be transient, only apparent at earlier time points, or might also be compensated for in the in vivo infection by the interlaced pattern of other regulators. SigB might possess only to a lesser extent characteristics attributed to virulence factors and might act in vivo more like a virulence modulator and fine tune bacterial reactions. In addition to the analysis of tissue samples, different in vitro models were furthermore studied. The third part of this thesis focuses on bone-marrow derived macrophages (BMM) of the two mouse strains BALB/c and C57BL/6, which are described in literature to exhibit genetically determined differences in their reaction to infection. Expression profiling was performed on control and IFN-\γ treated samples from a serum-free cultivation system and revealed mainly induction of gene expression after treatment of BMM with IFN-\γ. Gene expression changes confirmed known IFN-\γ effects like induction of immunoproteasome, antigen presentation, interferon signaling related genes, GTPase/GBPs, and inducible NO synthase. IFN-\γ dependent gene expression changes were highly similar in BALB/c and C57BL/6 BMM. Considering gene expression differences between BMM of both strains, a similar expression trend was visible on the level of untreated controls as well as after IFN-\γ treatment. Differentially expressed genes between BMM of both strains included immune-relevant genes as well as genes linked to cell death, but the coverage of functional groups was limited. The bronchial epithelial cell line S9 was used as an in vitro model system for the infection with S. aureus RN1HG. The fourth chapter in this thesis includes S9 cell gene expression signatures 2.5 h and 6.5 h after start of infection. At the early time point, only 40 genes were differentially expressed, which nevertheless indicated a beginning pro-inflammatory response, e. g. induction of cytokines (IL-6, IFN-\β, LIF) or prostaglandin-endoperoxide synthase 2 (PTGS2), but also counter-regulatory processes, e. g. induction of CD274. The host cell response was dramatically aggravated at the later 6.5 h time point. Differential expression was detected for 1196 genes. These included induced cytokines, pattern recognition receptor signaling, antigen presentation, and genes involved in immune defense (e. g. GBPs, MX, APOL). Negative effects on growth and proliferation were even more enhanced in comparison to the early time point, and signs for apoptotic processes were revealed. Finally, the last chapter addresses amongst others the pathogen’s expression profile in the S9 cell in vitro infection model at the two time points 2.5 h and 6.5 h after start of infection by tiling array gene expression analysis. The pathogen expression profiling revealed the activity of the SaeRS two-component system in internalized staphylococci. Partly dependent on SaeRS, the induction of adhesins (e. g. fnbAB, clfAB), toxins (hlgBC, lukDE, hla), and immune evasion genes (e. g. chp, eap) was observed. Furthermore, expression changes of metabolic genes were recorded (gene induction of amino acid biosynthesis, TCA cycle, gluconeogenesis; gene repression of glycolysis, purine biosynthesis, tRNA synthetases). Expression analysis recorded a distinct bacterial expression program, which supported literature results of a specific, bacterial strain and host cell line dependent transcriptional adaptation of the pathogen.}, language = {en} }