@phdthesis{Dierks2015, author = {Jan Dierks}, title = {Taking genes seriously - An interest-based approach to environmental ethics and biodiversity conservation}, journal = {Gene ernst nehmen - Ein interessenbasierter Ansatz zur Umweltethik und zum Biodiversit{\"a}tsschutz}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-002286-2}, year = {2015}, abstract = {Many ethicists consider the rule of nonmaleficence – Do no harm! – to be the most fundamental ethical rule and key to ethics. This rule is taken as the foundation of the present work. I argue that any entity, that can be harmed, ought to be morally considered. Only those entities can be harmed that are inherently goal-directed or striving – in other words, that possess a telos. The reason is that by constantly acting in ways to preserve their being and to prevent their own not-being, goal-directed entities express that they value their own good. To harm such a goal-directed entity therefore means to act against the values and the good of it. The argument so far supports ethical biocentrism, that is, the view that all living, goal-directed beings are harmable, possess interests, and are, thus, morally considerable, while non-living beings are not. Yet, I digress from classical biocentrism since I conclude, based on analysis of evolutionary and biological findings, that the locus of goal-directedness and potential harm is also, if not foremost, situated in genes. Within many species, individual organisms sacrifice themselves for the betterment of their descendants like in praying mantises where males sacrifice themselves and are eaten by the female during copulation. This shows that it is not necessarily the organism as an individual which follows its own interests and goals. Individual organisms are – to a high degree – “directed” by their genes. Even in highly developed animals, genes play a significant role in the goal-directedness of the individuals. An adult human organism, for example, consists of trillions of individual cells. However, all these cells are derived from a single cell – the fertilized egg. Each of our lives begins with a single cell that contains almost all information to finally form our functioning body. Where do all the instructions, the goal-directedness come from to finally form an adult organism if not from the genes contained in this first cell, the zygote? It is the genes of each zygote that contain a set of information for making the appropriate adult. Organisms are largely programmed to do everything necessary to stay in existence, to survive, and finally to pass on their genes successfully – either by reproducing or by helping close relatives that carry a similar set of genes. The main interests of genes lie in their continued existence. This necessitates reproduction since the gene-carrying organisms will inevitably die. Single genes, though, are difficult to morally consider directly since they perform entirely in and through individual organisms. Without the individual organisms, genes cannot survive. The good news for ethics is that the interests of genes and organism usually converge: individual organisms try to survive – as do their genes. In practice, it thus makes much more sense to give moral attention to entire organisms instead of single genes. An advantage of the gene-centric ethical theory proposed here is that the moral relevance of future generations and species can be “directly” justified: Since genes have an interest in their continued existence (in the form of identical copies), they would be harmed if future generations were doomed to inexistence. Within a species with many individuals, each gene is likely to be represented in many organisms. The smaller the gene pool of a species gets, the less likely is the existence of the same gene and, therefore, the less likely is the fulfillment of its fundamental interests. Hence, saving one of the last individuals of an endangered species would be ethically preferable to saving an individual of a populous species. Unfortunately, moral conflicts are abundant – not only concerning biodiversity conservation. We often have to choose between harming either entity A or entity B – for example in the daily questions of food and eating. In such cases, a strictly egalitarian theory (especially an egalitarian biocentric one) would be no real help and without any guiding power. Therefore, on a second level of morality, we have to include additional criteria that help to minimize the overall harm. For these criteria to be objective, universalizable, and thus moral ones, I apply a number of widely accepted ethical principles like the principle of proportionality, impartiality, self-defense, and universalizability. By recurring to these principles, I identify a set of morally relevant criteria for a fair resolution of moral conflict situations which help to minimize the overall harm done. The identified criteria are: (phylogenetic) nearness, endangerment, r- or K-selected species, evolutionary distinctiveness, ability to regrow and to regenerate, pain-susceptibility, and ecosystematic role. In sum, my gene-centric environmental ethical theory provides numerous reasons and arguments for biodiversity conservation – for protecting genes, organisms, species, and ecosystems alike – without neglecting the needs of humans.}, language = {en} }