@phdthesis{Grumann2010, author = {Dorothee Grumann}, title = {Funktionelle Charakterisierung neuer Virulenzfaktoren von Staphylococcus aureus}, journal = {Funktionelle Charakterisierung neuer Virulenzfaktoren von Staphylococcus aureus}, url = {https://nbn-resolving.org/urn:nbn:de:gbv:9-000866-1}, year = {2010}, abstract = {Staphylococcus (S.) aureus is the most common cause of nosocomial infections and the species is becoming increasingly resistant to antibiotics. In contrast, about 35\% of the healthy population are colonized with S. aureus in the anterior nares. The genetic make-up of this species is highly diverse. Mobile genetic elements comprise about 15\% of the S. aureus genome. They encode many virulence factors like the 21 different known staphylococcal superantigens (SAgs), highly potent activators of T lymphocytes. Besides their well known causative role in food poisoning and toxic shock syndrome, information about SAg involvement in pathogenesis is limited. On the other hand, the human host and its immune response are also highly diverse. This study focuses on SAgs, because they are potent virulence factors that are highly diverse and therefore mirror of the variability of the species S. aureus. The goals of this work were (i) to identify virulence determinants by comparing the prevalence of SAg genes and phages among colonizing and invasive S. aureus isolates and to correlate it with the clonal background, (ii) to determine the prevalence and the development of anti-SAg antibodies in healthy S. aureus carriers and noncarriers as well as in bacteremia patients, and (iii) to elucidate the reasons for the selective lack of neutralizing serum antibodies specific for a subgroup of SAgs, the egc SAgs. In search for a molecular-epidemiological associations between SAgs and different diseases caused by S. aureus we investigated the distribution of SAg genes and/ or bacteriophages and correlated this with the clonal background, determined by spa genotyping. The analysis of more than 700 S. aureus isolates from nasal colonization, bacteremia or furunculosis revealed that SAg-encoding mobile genetic elements and bacteriophages were strongly associated with the clonal background. As a consequence, each clonal lineage was characterized by a typical SAg gene and phage repertoire. Therefore, we suggest that the simultaneous assessment of virulence gene profiles and the genetic background strongly increases the discriminatory power of genetic investigations into the mechanisms of S. aureus pathogenesis. However, we found no association of SAg genes with bacteremia or furunculosis. While functional neutralization assays closely mimic the protective action of anti-SAg antibodies in vivo, they are labor-intensive and time-consuming. A fast and easy method for the simultaneous quantification of antibody binding to multiple staphylococcal antigens is the Luminex® technology. Using serum samples from persistent carriers and noncarriers we showed a strong correlation between antibody binding and neutralizing capacity against the SAg TSST-1. This assay confirmed the astonishing lack of antibodies against egc SAgs in healthy carriers and noncarriers, which was previously described by Holtfreter and coworkers. Since colonization is probably not sufficient to induce a robust antibody response as revealed by experimental colonization with S. aureus, we propose that (minor) infections are required to induce the high titers of non-egc SAg-neutralizing antibodies in healthy adults. To test this, we investigated whether SAgs elicit a neutralizing antibody response during S. aureus bacteremia. At the acute phase of the disease most patients already had neutralizing antibodies against non-egc SAgs, and antibody titers frequently increased during infection. Notably, egc SAgs did not elicit a boost or de novo generation of specific antibodies. The “egc gap” in the antibody response, which has now been shown in healthy adults, as well as following systemic infection with S. aureus, is astonishing. After all, egc SAgs are by far the most prevalent SAgs. In search for an explanation, the intrinsic properties of three recombinant egc (SEI, SElM, SElO) and non-egc SAgs (SEB, SElQ, TSST-1) were compared in depth. Egc and non-egc SAgs were very similar with regard to induced T cell proliferation, cytokine profiles, and gene expression of human immune cells. However, there was a striking difference in the regulation of the two groups of SAgs by S. aureus in bacterial culture. We conclude that the differential regulation of egc and non-egc SAg has an impact on the immune response. But how are SAgs regulated by S. aureus during its interaction with the host? Up until now most research on regulation of virulence factors has been performed in vitro. The immune response can help to shed light on this problem, because it is an exquisitely specific sensor for the exposure to different antigens. The high prevalence of neutralizing serum antibodies against non-egc SAgs indicates that most healthy adults have been exposed to these toxins during their encounters with S. aureus. For egc SAgs this remains an open question. However, initial data indicate that the egc SAg genes are transcribed during nasal colonization.}, language = {en} }